能量项链
题目
在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为(Mars单位),新产生的珠子的头标记为m,尾标记为n。
需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:
(4⊕1)=10×2×3=60。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为:
((4⊕1)⊕2)⊕3)=10×2×3+10×3×5+10×5×10=710。
输入
输入的第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。
至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。
输入样例
4
2 3 5 10
输出
输出只有一行,是一个正整数E(E≤2.1*109),为一个最优聚合顺序所释放的总能量。
输出样例
710
思路
这道题其实和矩阵链相乘很像,只是这道题是环状,而且要求最大
预处理,由于是环状,所以复制数组,并w[2*n+1]=w[1]。
设把第x颗珠子到第y颗珠子的一段项链合成一颗珠子能得到的最大能量值为f[x,y],考虑第i颗珠子到第k颗珠子的一段项链,1<=i<k<=n,则应有
max(f[i][j],f[i][k-1]+f[k][j]+a[i]*a[k]*a[j+1]);
其中i为第i颗珠子的头标记,j为第j颗珠子的头标记,k为第k颗珠子的头标记。可见本问题满足动态规划的条件,即子问题的无后效性。故我们可以根据f[i,j]来设计本问题的算法:先算f[1,2],f[2,3]…,再算f[1,3],f[2,4],…f[1,4],f[2,5]…
代码
#include<cstdio>
#include<iostream>
using namespace std;
int f[205][205],a[205],n,temp;//初始化
int main()
{
scanf("%d",&n);//读入
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);//读入
a[n+i]=a[i];//复制数组
}
for (int i=1;i<=n*2-2;i++)//要再加一个n,因为n+1到n*2是等于1到n的,所以要加1,就变成了n-1+n-1,而这就变成了n*2-2
f[i][i+1]=a[i]*a[i+1]*a[i+2];//先把长度为2的先做了(较特殊)
for(int len=3;len<=n;len++)//从3开始枚举长度
for(int i=1;i<=2*n-len;i++)//枚举前面的矩阵
{
int j=i+len-1;//制定后面的矩阵的边界
for(int k=i+1;k<=j;k++)//枚举后面的矩阵
f[i][j]=max(f[i][j],f[i][k-1]+f[k][j]+a[i]*a[k]*a[j+1]);//动态转移方程
}
for (int i=1;i<=n;i++)
temp=max(temp,f[i][i+n-1]);//求出最大的(从每种排列中)
printf("%d",temp);//输出
return 0;
}