逻辑回归相比于线性回归,有何异同?
1、逻辑回归处理的是分类问题,线性回归处理的是回归问题,这是两者的本质区别。
-
逻辑回归中,因变量取值是一个二元分布,模型学习出的是:
E [ y ∣ x ; θ ] E[y|x;\theta] E[y∣x;θ] -
即给定自变量和超参数后,得到因变量的期望,并基于此期望来处理预测分类问题:
y ′ = θ T x y' = \theta^Tx y′=θTx
是对我们假设的真实关系
y = θ T x + ε y=\theta^Tx+\varepsilon y=θTx+ε
的一个金色,其中 ε \varepsilon ε是误差,我们使用近似项来处理回归问题
2、分类和回归是机器学习中两个不同的任务。而属于分类算法的逻辑回归,其命名有一定的历史原因。 -
实际上,将逻辑回归的公式进行整理,我们可以得到
l o g p 1 − p = θ T x log\frac{p}{1-p} =\theta^Tx log1−pp=θTx
其中,p=P(y = 1|x),也就是正样本的概率 -
如果一个时间的记录(odds)定义为该事件发生的概率与该事件不发生概率的比值
p 1 − p \frac{p}{1-p} 1−pp
那么逻辑回归可以看做"y=1|x"这一事件的对数几率的线性回归,也就是我们管用的逻辑回归
3、在关于逻辑回归的讨论中,我们均认为y是因变量,而非
p 1 − p \frac{p}{1-p} 1−pp
这便引出了逻辑回归和线性回归的最大区别,即逻辑回归中的因变量是离散的,而线性回归的因变量是连续的 -
在自变量x与超参数 θ \theta θ确定的情况下,逻辑回归可以看做广义的线性回归,在因变量y服从二元分布时的一种特殊情况。
-
而使用最小二乘法求线性回归时,我们认为因变量y符合正态分布。
于此同时,逻辑回归与线性回归也有相同之处,主要在以下几个方面:
1、我们可以认为二者都使用了极大似然估计对训练样本进行建模
2、线性回归使用最小二乘法,实际上就是自变量x与超参数 θ \theta θ确定,因变量y服从正态分布的假设下,使用极大似然估计的一个化简;而逻辑回归中通过对似然函数
的学习来得到最佳 θ \theta θ
3、. 二者在求解超参数的过程中,都可以使用梯度下降的方法,这也是监督学习中一个常见的相似之处。