计算小明爬楼梯的爬法数量

递归

链接

# 计算小明爬楼梯的爬法数量
def clambstairs1(n):
    a = 1
    b = 2
    c = 4
    for i in range(n-3):
        c,b,a = a+b+c,c,b
    return c


def clambstairs2(n):
    fir = {1:1,2:2,3:4}
    if n in fir.keys():
        return fir[n]
    else:
        return clambstairs2(n-1)+clambstairs2(n-2)+clambstairs2(n-3)


if __name__ == "__main__":
    print(clambstairs2(14))
    print(clambstairs1(14))
小明楼梯的问题可以转化为经典的动态规划问题,通常称为“爬楼梯”或“阶跃数”问题。我们可以用两个变量来表示当前剩余的台阶数和已经走过的最大步数。以下是两种方的代码: **递推 (Bottom-Up Approach - 动态规划)** 递推则通过从最简单的情况开始逐步构建更复杂的结果。在这个例子中,我们从0个台阶15台阶依次计算所有可能性。 ```python def climb_stairs_recurrence(steps): if steps <= 0: # 如果没有台阶,有1种方 return 1 elif steps == 1: # 只有一个台阶,也只有一种方 return 1 else: # 分别考虑不跨步、跨1步和跨2步到达的情况 dp = [0] * (steps + 1) dp[0], dp[1], dp[2] = 1, 1, 2 # 初始化前三个状态 for i in range(3, steps + 1): dp[i] = dp[i - 3] # 加上跨2步的情况 return dp[steps] # 测试 stairs = 15 print("上楼梯的方总数:", climb_stairs_recurrence(stairs)) ``` **递归 (Top-Down Approach - 回溯)** 递归会直接尝试解决所有可能的情况,然后回溯过程来找到最终的答案。但是由于存在大量重复计算,对于大的台阶数可能会导致效率较低。 ```python def climb_stairs_recursion(steps): def helper(current, remaining): if current == steps or remaining == 0: # 达到目标或无台阶 return 1 return helper(current + 1, remaining) + \ helper(current + 2, remaining - 1) + \ helper(current + 3, remaining - 2) return helper(0, steps) # 测试 stairs = 15 print("上楼梯的方总数 (递归):", climb_stairs_recursion(stairs)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值