请定一个无向图,顶点编号从0到n-1,用深度优先搜索(DFS),遍历并输出。遍历时,先遍历节点编号小的。
Input
输入第一行为整数n(0 < n < 100),表示数据的组数。 对于每组数据,第一行是两个整数k,m(0 < k < 100,0 < m < k*k),表示有m条边,k个顶点。 下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示DFS的遍历结果。
Sample Input
1
4 4
0 1
0 2
0 3
2 3
Sample Output
0 1 2 3
该题使用DFS解决,因为是从0开始(即使不是0,也可以在输入的时候确定最小值开始),所以使用记录下的无向边来寻找与0连接所有的点,从标记0为已遍历,在第一个点开始,再从与该点连接的无向边开始寻找,以此往复。
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
int num[103][103], vis[103];
int k, m, u, v;
void dfs(int z)
{
vis[z] = 1;
for(int i=0;i<k;i++)
{
if(num[z][i]&&!vis[i])
{
vis[i] = 1;
cout<<" "<<i;
dfs(i);
}
}
}
int main()
{
int n;
cin>>n;
while(n--)
{
memset(num, 0, sizeof(num));
memset(vis, 0, sizeof(vis));
cin>>k>>m;
for(int i=0;i<m;i++)
{
cin>>u>>v;
num[u][v] = num[v][u] = 1;
}
cout<<0;
dfs(0);
cout<<endl;
}
return 0;
}