前言
“代码随想录”刷题记录。总结笔记均会放在“算法刷题-代码随想录”该专栏下,以下为原文的链接。
代码随想录此题链接
题目
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。
实现 MyStack 类:
void push(int x) 将元素 x 压入栈顶。
int pop() 移除并返回栈顶元素。
int top() 返回栈顶元素。
boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。
注意:
你只能使用队列的基本操作 —— 也就是 push to back、peek/pop from front、size 和 is empty 这些操作。
你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
示例:
输入:
[“MyStack”, “push”, “push”, “top”, “pop”, “empty”]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]
解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False
提示:
1 <= x <= 9
最多调用100 次 push、pop、top 和 empty
每次调用 pop 和 top 都保证栈不为空
进阶:你能否仅用一个队列来实现栈。
一.一个队列模拟栈
思路(定义变量)
- 申请一个队列对象queue。
2. 本题思路分析:
push的实现思路:
- 每次将元素存入队列对象中,将之前的元素全部依次放到刚存入元素之后。(存入时即将队列中元素存储顺序调整为栈式存储顺序)
pop的实现思路:
- 将队列首部去除(相当于去除栈顶部)
empty的实现思路:
当进队列为空时,则说明此时栈为空。
top的实现思路:
- 返回队列首部的元素
3. 算法实现
- 代码:
JAVA
class MyStack {
public:
queue<int> q;
MyStack() {
}
void push(int x) {
q.offer(x);
int size = q.size();
while(size-- > 1){
q.offer(q.front());
q.pop();
}
}
int pop() {
int front = q.front();
q.pop();
return front;
}
int top() {
return q.front();
}
bool empty() {
return q.empty();
}
};
C++
#include <queue>
using namespace std;
public:
queue<int> q;
MyStack() {
}
void push(int x) {
q.push(x);
int size = q.size();
while(size-- > 1){
q.push(q.front());
q.pop();
}
}
int pop() {
int front = q.front();
q.pop();
return front;
}
int top() {
return q.front();
}
bool empty() {
return q.empty();
}
4. pop函数的算法复杂度
- 时间复杂度:O(n)
- 空间复杂度:O(1)
5. 算法坑点
- 记得push函数的while循环中,要对于size进行–
- queue对象获取的队首元素(第一个元素)的API是queue.front();
而stack对象获取栈顶元素(第一个元素)的API是stack.top()。 - while(i–) 等价于 while(i > 0)
while(–i) 等价于 while(i >= 0) - ArrayDeque获取队首元素的API包括:getFirst()、peek()、
6.刷题记录
第三次 一遍过 6min,但是忘记了push对于,还是记成了