前言
我在刷卡哥的“代码随想录”,自己的总结笔记均会放在“算法刷题-代码随想录”该专栏下。
代码随想录此题链接
题目
1.子集问题(树层去重)
每个组合集合中允许重复(指的重复不是同一个元素可以重复取多次,而是值相同的几个元素可以出现在一个组合集合中),但是集合之间不允许重复。
全局变量
//1.最终总的结果集
List<List<Integer>> result = new ArrayList<>();
//2.每次组合的集合
LinkedList<Integer> path = new LinkedList<Integer>();
2. 本题思路分析:
回溯三部曲:
- 参数与返回值:
- 参数:需要输入的nums数组,startIndex为当前循环遍历到的数组下标
- 返回值:void
- 子集问题将遍历的所有节点加入到结果集result中
- 将当前子集的集合path加入到reslut最终结果集中,这个不需要条件判断
- 终止条件(可省略):
- 当startIndex等于nums的长度即可return结束此次递归
- 单层循环逻辑:
- 从当前的startIndex开始遍历nums数组,
- 树层去重判断:若当前遍历的下标大于startIndex,并且当前的nums元素的值等于上一位nums元素的值,则说明此时就是树层重复,需要跳过这轮遍历。(前提是nums数组必须是有序的,需要提前对nums数组进行排序)
- 将当前遍历到的nums数组下标中的元素加入到组合集合中(剪枝操作);
- 进行递归,递归中startIndex对应的应该是i+1(当前遍历的下标+1);
- 递归结束后要回溯,就是把当前遍历到的nums数组下标中的元素从组合集合中删除。
3. 算法实现
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<Integer>();
public List<List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums);
backtracking(nums,0);
return result;
}
public void backtracking(int[] nums,int startIndex){
result.add(new LinkedList(path));
for(int i = startIndex;i < nums.length;i++){
if(i > startIndex && nums[i - 1] == nums[i]){
continue;
}
path.add(nums[i]);
backtracking(nums,i + 1);
path.removeLast();
}
}
}
4. 算法坑点
- 树层去重判断(前提nums数组必须有序!!):若当前遍历的下标大于startIndex(说明不是这层迭代遍历的第一轮;若此时下标对应nums集合元素的值等于上一位nums元素的值,则说明现在这个和之前的下标之间是树层关系,不是树枝关系),并且当前的nums元素的值等于上一位nums元素的值,则说明此时就是树层重复,需要跳过这轮遍历。(如果看完还是不理解这里说的意思,可以看carl哥本题的详细解释,这里就是用自己的话简单描述了一下)
- 树层去重,nums数组必须有序,如果不有序,上述的判断逻辑不起作用。
- 关于什么时候使用startIndex来标识当前遍历到的元素
- 如果是一个集合来求组合的话,就需要startIndex,例如本题
- 如果是一个集合来求组合的话,就需要startIndex,例如73-17. 电话号码的字母组合