1079 延迟的回文数 (20 分)
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。
输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
思考
首先高度参考了 https://blog.csdn.net/gl486546/article/details/78822188 收获颇多。
学到了 < algorithm > 中 reverse 的用法;
学到了实现字符串形式大型数字加法模拟(以下代码);
#include<bits/stdc++.h> 包含了目前C++所包含的所有头文件,在使用#include<bits/stdc++.h>头文件便可以一次性包含所有头文件,在写程序时可以避免书写繁琐的头文件名。
参见:https://blog.csdn.net/cnd2449294059/article/details/72871240
据资料其会降低编译速度。
参考
string Add(string A, string B) {
string C;
int i = A.size() - 1;
int Bas = 0, Adv = 0;
while (i >= 0) {
Bas = (A[i] - '0') + (B[i] - '0'); //当前位所得值
C += (Adv + Bas) % 10 + '0'; //当前位终值
Adv = (Adv + Bas) / 10; //进位值
--i;
}
if (Adv) C += (Adv + '0'); //若最后仍有进位值
reverse(C.begin(), C.end()); //逆转得到两数和
return C;
}
AC代码
#include <algorithm>
#include <iostream>
#include <string>
using namespace std;
string Add(string A, string B); //字符串形式加和
bool isPalindromic(string C); //判断是否为回文数
int main() {
string A, B, C;
cin >> A;
if (isPalindromic(A)) { cout << A << " is a palindromic number."; return 0; } //开始即为回文数
int cnt = 10;
bool flag = false;
while (cnt--) { //仅限十步
B = A;
reverse(B.begin(), B.end()); //得到原始数的逆转数
C = Add(A, B);
cout << A << " + " << B << " = " << C << endl; //结果为回文数则结束
if (isPalindromic(C)) { cout << C << " is a palindromic number."; flag = true; break; }
A = C; //继续操作
}
if (flag == false) cout << "Not found in 10 iterations."; //十步内未找到回文数
return 0;
}
string Add(string A, string B) {
string C;
int i = A.size() - 1;
int Bas = 0, Adv = 0;
while (i >= 0) {
Bas = (A[i] - '0') + (B[i] - '0'); //当前位所得值
C += (Adv + Bas) % 10 + '0'; //当前位终值
Adv = (Adv + Bas) / 10; //进位值
--i;
}
if (Adv) C += (Adv + '0'); //若最后仍有进位值
reverse(C.begin(), C.end()); //逆转得到两数和
return C;
}
bool isPalindromic(string C) {
int Len = C.size(), i;
bool flag = true;
for (i = 0; i < Len / 2; i++) if (C[i] != C[Len - 1 - i]) flag = false;
return flag;
}