yolox
陈平安|
没有深度思考的行动毫无意义
展开
-
yoloxmosaic增强2
import torchimport xml.etree.ElementTree as ETimport osimport cv2import numpy as npfrom torchvision import transformsimport randomdef get_mosaic_coordinate(mosaic_image, mosaic_index, xc, yc, w, h, input_h, input_w): # TODO update doc # i.原创 2021-09-04 15:34:54 · 376 阅读 · 0 评论 -
yoloxmosaic数据增强
#!/usr/bin/env python3# -*- coding:utf-8 -*-# Copyright (c) Megvii, Inc. and its affiliates.import randomimport cv2import numpy as npfrom yolox.utils import adjust_box_anns, get_local_rankfrom ..data_augment import box_candidates, random_perspe.原创 2021-09-03 23:02:45 · 1623 阅读 · 0 评论 -
YoloX算法学习(1)
SimOTA① 通过anchor中心在GT内部以及GT中心点周围2.5个像素范围内的anchor,首先粗筛确定一批候选框② 对这批候选框执行SimOTA 分配策略,为每个GT动态分配dynamic个候选框 ,M个GT,N个候选框,类似一个MxN的矩阵,矩阵内部元素是对应位置下的Iou_loss 以及cls_loss步骤1、计算预测框与目标框之间的Iou_loss pair_wise_ious = bboxes_iou(gt_bboxes_per_image, bboxes原创 2021-08-16 00:05:00 · 643 阅读 · 0 评论