centerloss tensorflow代码分析以及疑点

本文详细解析了TensorFlow中实现center loss的代码,包括数据处理、损失函数计算、中心点更新等关键步骤,并记录了在理解过程中遇到的问题,如get_shape()[1][1]的含义、tf.gather的使用以及平均值计算方式等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文借鉴网上已有的center loss tensorflow版本代码,记录自己在解读该代码时所遇到的知识点以及疑问。

由于python知识浅薄,很多地方不懂,不要见笑。

def get_center_loss(features,labels,alpha=0.5,num_class=10):

#处理数据集为MNIST,所以num_class为10

#get feature dimension 这是为了初始化centers 使用get_shape()来取得维度 但是不明白为什么后面跟着[1] 待研究

len_features = features.get_shape()[1]

#initailizer class center 用get_variable函数 定义centers

#因为center loss里的center是根据公式计算更新而不是梯度下降更新,所以属性trainable为false

centers = tf.get_variable('centers',[num_class,len_features],dtype=tf.flloat32,initializer = tf.constant_initializer(0),trainable = False)

#为了节省计算量,center loss的中心更新都是在mini batch内进行的,所以需要获得mini batch内的centers

#center的获得是通过tf.gather函数来获取。该函数以labels作为index,从以初始化的centers中抽取出minibatch的centers。(tf.gather(params,indexs),根据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值