- 博客(8)
- 收藏
- 关注
原创 交叉熵损失(Cross-Entropy Loss)
在实际应用中,交叉熵损失通常与softmax函数结合使用,softmax函数可以将模型的原始输出(logits)转换为概率分布。对于正确的类别,当模型的预测概率越接近1时,损失越小;y:真实标签的概率分布,通常为一个独热编码向量,表示正确的类别位置为1,其余位置为0。对于错误的类别,当模型的预测概率越接近0时,损失越小;它鼓励模型对正确的类别有更高的预测概率,同时又对错误的类别有更低的预测概率。p:模型预测的概率分布,通常是模型输出层(如softmax层)的输出。Pi:预测概率向量中的第 i个元素。
2024-03-24 15:44:33 622
原创 torch.tensor()函数
在PyTorch中,张量是一个多维数组,它可以包含数值数据,并且可以在GPU或CPU上进行高效的数值计算。torch.tensor是创建张量的一种简单方法,创建一个torch.tensor时,你可以传递一系列的参数,包括数据、数据类型、设备(CPU或GPU)等,这个函数会根据提供的数据创建一个新的张量。PyTorch提供了多种创建张量的方式,包括torch.zeros、torch.ones、torch.randn等,这些函数可以创建具有特定数值或分布的张量。
2024-03-24 10:12:05 1357
原创 Softmax函数
Softmax函数的一个重要性质是,当输入的原始分数(logits)差异很大时,输出的概率分布会非常尖锐,即某个类别的概率会非常接近1,而其他类别的概率则会非常接近0。通常被用于多分类的输出层,将模型输出的原始分数(也称为logits)转换成概率分布。Softmax函数的主要作用是确保输出的概率总和为1,并且每个输出的概率都在0到1之间。:为了确保所有类别的概率总和为1,Softmax函数在每个类别的指数值上加上一个归一化因子,即所有类别指数值的总和。个类别的原始分数(logit),而K是类别的总数。
2024-03-18 23:52:24 442
原创 sails学习——passport-jwt实现用户认证登录
node.js+sailssails+mysql+passport-jwt实现用户验证登录
2020-05-25 17:50:45 737 1
原创 power designer绘制数据流图操作步骤
用power designer画数据流图1.打开power designer=>文件=>新建模型。2.在弹出来的窗口中左边选中Categories、Information、Date flow diagram,然后可以改模块名称。这样就是进入了数据流图绘制页面。...
2020-04-16 13:00:32 6818 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人