【数值分析-说明】

证明 a r c t a n ( N + 1 ) − a r c t a n ( N ) = a r c t a n ( 1 1 + N ( N + 1 ) ) arctan(N+1)-arctan(N)=arctan(\frac{1}{1+N(N+1)}) arctan(N+1)arctan(N)=arctan(1+N(N+1)1)

前言

 笔者最近在学数值分析,在做一道习题时发现有个等式看不懂。上网查找众多资料,发现很多资料都没有讲清楚,于是自己打算整理一下证明过程。

证明步骤

  1. a r c t a n ( N + 1 ) − a r c t a n ( N ) arctan(N+1)-arctan(N) arctan(N+1)arctan(N) 看作角度差;

  2. 求角度差的正弦值,即 t a n ( a r c t a n ( N + 1 ) + a r c t a n ( N ) ) tan(arctan(N+1) + arctan(N)) tan(arctan(N+1)+arctan(N))

  3. 根据两角差的正切公式 t a n ( A − B ) = t a n ( A ) − t a n ( B ) 1 + t a n ( A ) t a n ( B ) tan(A-B)=\frac{tan(A)-tan(B)}{1+tan(A)tan(B)} tan(AB)=1+tan(A)tan(B)tan(A)tan(B)
    求得 t a n ( a r c t a n ( N + 1 ) + a r c t a n ( N ) ) = t a n ( a r c t a n ( N + 1 ) ) + t a n ( a r c t a n ( N ) ) 1 + t a n ( a r c t a n ( N + 1 ) ) t a n ( a r c t a n ( N ) ) = 1 1 + N ( N + 1 ) tan(arctan(N+1)+arctan(N))=\frac{tan( arctan(N+1) ) + tan(arctan(N)) }{1+tan(arctan(N+1))tan(arctan(N))}=\frac{1}{1+N(N+1)} tan(arctan(N+1)+arctan(N))=1+tan(arctan(N+1))tan(arctan(N))tan(arctan(N+1))+tan(arctan(N))=1+N(N+1)1

  4. 再求反正切值
    a r c t a n ( N + 1 ) − a r c t a n ( N ) = a r c t a n ( 1 1 + N ( N + 1 ) ) arctan(N+1)-arctan(N)=arctan(\frac{1}{1+N(N+1)}) arctan(N+1)arctan(N)=arctan(1+N(N+1)1)

  5. 证明完毕。

参考文献:

[1] 证明:arctan(n+1)-arctan(n)=arctan{1/[1+n(n+1)]}
[2] 两角和差公式及推导过程

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值