证明 a r c t a n ( N + 1 ) − a r c t a n ( N ) = a r c t a n ( 1 1 + N ( N + 1 ) ) arctan(N+1)-arctan(N)=arctan(\frac{1}{1+N(N+1)}) arctan(N+1)−arctan(N)=arctan(1+N(N+1)1)
前言
笔者最近在学数值分析,在做一道习题时发现有个等式看不懂。上网查找众多资料,发现很多资料都没有讲清楚,于是自己打算整理一下证明过程。
证明步骤
-
把 a r c t a n ( N + 1 ) − a r c t a n ( N ) arctan(N+1)-arctan(N) arctan(N+1)−arctan(N) 看作角度差;
-
求角度差的正弦值,即 t a n ( a r c t a n ( N + 1 ) + a r c t a n ( N ) ) tan(arctan(N+1) + arctan(N)) tan(arctan(N+1)+arctan(N)) ;
-
根据两角差的正切公式 t a n ( A − B ) = t a n ( A ) − t a n ( B ) 1 + t a n ( A ) t a n ( B ) tan(A-B)=\frac{tan(A)-tan(B)}{1+tan(A)tan(B)} tan(A−B)=1+tan(A)tan(B)tan(A)−tan(B) ;
求得 t a n ( a r c t a n ( N + 1 ) + a r c t a n ( N ) ) = t a n ( a r c t a n ( N + 1 ) ) + t a n ( a r c t a n ( N ) ) 1 + t a n ( a r c t a n ( N + 1 ) ) t a n ( a r c t a n ( N ) ) = 1 1 + N ( N + 1 ) tan(arctan(N+1)+arctan(N))=\frac{tan( arctan(N+1) ) + tan(arctan(N)) }{1+tan(arctan(N+1))tan(arctan(N))}=\frac{1}{1+N(N+1)} tan(arctan(N+1)+arctan(N))=1+tan(arctan(N+1))tan(arctan(N))tan(arctan(N+1))+tan(arctan(N))=1+N(N+1)1 ; -
再求反正切值
即 a r c t a n ( N + 1 ) − a r c t a n ( N ) = a r c t a n ( 1 1 + N ( N + 1 ) ) arctan(N+1)-arctan(N)=arctan(\frac{1}{1+N(N+1)}) arctan(N+1)−arctan(N)=arctan(1+N(N+1)1) -
证明完毕。
参考文献:
[1] 证明:arctan(n+1)-arctan(n)=arctan{1/[1+n(n+1)]}
[2] 两角和差公式及推导过程