【玩转数据结构 从入门到精通8学习笔记】线段树

线段树(区间树)

首先来看我们为什么需要使用线段树,可以来看一个经典问题,区间查询,使用线段树可以优化时间复杂度,使用数组实现为O(n),而使用线段树为O(lgn)。
在这里插入图片描述
对于查询,查询一个区间的最大值,最小值,或者区间数字和,都可看做是左右两孩子的融合过程,所以在实现上依然可以使用递归
在这里插入图片描述
由下图可以看出线段树不是完全二叉树,它是一个平衡二叉树,何为平衡二叉树?
它或者是一颗空树,或者具有以下性质的二叉树:它的左子树和右子树的深度之差(平衡因子)的绝对值不超过1,且它的左子树和右子树都是一颗平衡二叉树。
那么如果该区间有n个节点,数组表示需要多少节点(需要多大空间)?
由下图可看出,需要4n的空间,才可装下线段树,可能会有大半空间被浪费
在这里插入图片描述

基本结构

public interface Merger<E> {
    E merge(E a, E b);
}

public class SegmentTree<E> {

    private E[] tree;//存放线段树的数组
    private E[] data;//存放输入的数组
    private Merger<E> merger;//融合器,融合左右孩子

    public int getSize(){
        return data.length;
    }

    public E get(int index){
        if(index < 0 || index >= data.length)
            throw new IllegalArgumentException("Index is illegal.");
        return data[index];
    }

    // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
    private int leftChild(int index){
        return 2*index + 1;
    }

    // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
    private int rightChild(int index){
        return 2*index + 2;
    }

    @Override
    public String toString(){
        StringBuilder res = new StringBuilder();
        res.append('[');
        for(int i = 0 ; i < tree.length ; i ++){
            if(tree[i] != null)
                res.append(tree[i]);
            else
                res.append("null");

            if(i != tree.length - 1)
                res.append(", ");
        }
        res.append(']');
        return res.toString();
    }

    public SegmentTree(E[] arr, Merger<E> merger){

        this.merger = merger;

        data = (E[])new Object[arr.length];
        for(int i = 0 ; i < arr.length ; i ++){
            data[i] = arr[i];}

        tree = (E[])new Object[4 * arr.length];
        buildSegmentTree(0, 0, arr.length - 1);
    }


构建线段树

思路:线段树是树,当然具有递归结构,这里先看递归终止条件,
当递归到叶子节点时,递归终止,所以当l=r时,递归终止,这里还要借助mid,然后递归左孩子和右孩子,最后再融合。

 // 在treeIndex的位置创建表示区间[l...r]的线段树
    private void buildSegmentTree(int treeIndex, int l, int r){

        if(l == r){
            tree[treeIndex] = data[l];
            return;
        }

        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);

        // int mid = (l + r) / 2;
        int mid = l + (r - l) / 2;
        buildSegmentTree(leftTreeIndex, l, mid);
        buildSegmentTree(rightTreeIndex, mid + 1, r);

        tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
    }

查询

这里要分类讨论,查询区间左边界大于中间值,查询右边界小于等于中间值,查询区间包括中间值三种情况

// 返回区间[queryL, queryR]的值
    public E query(int queryL, int queryR){

        if(queryL < 0 || queryL >= data.length ||
                queryR < 0 || queryR >= data.length || queryL > queryR)
            throw new IllegalArgumentException("Index is illegal.");

        return query(0, 0, data.length - 1, queryL, queryR);
    }

    // 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
    private E query(int treeIndex, int l, int r, int queryL, int queryR){

        if(l == queryL && r == queryR)
            return tree[treeIndex];

        int mid = l + (r - l) / 2;
        // treeIndex的节点分为[l...mid]和[mid+1...r]两部分

        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);
        if(queryL >= mid + 1)
            return query(rightTreeIndex, mid + 1, r, queryL, queryR);
        else if(queryR <= mid)
            return query(leftTreeIndex, l, mid, queryL, queryR);

        E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
        E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
        return merger.merge(leftResult, rightResult);
    }

更新

// 将index位置的值,更新为e
        public void set(int index, E e){

            if(index < 0 || index >= data.length)
                throw new IllegalArgumentException("Index is illegal");

            data[index] = e;
            set(0, 0, data.length - 1, index, e);
        }

        // 在以treeIndex为根的线段树中更新index的值为e
        private void set(int treeIndex, int l, int r, int index, E e){

            if(l == r){
                tree[treeIndex] = e;
                return;
            }

            int mid = l + (r - l) / 2;
            // treeIndex的节点分为[l...mid]和[mid+1...r]两部分

            int leftTreeIndex = leftChild(treeIndex);
            int rightTreeIndex = rightChild(treeIndex);
            if(index >= mid + 1)
                set(rightTreeIndex, mid + 1, r, index, e);
            else // index <= mid
                set(leftTreeIndex, l, mid, index, e);

            tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
        }

基于线段树的LEETCODE问题

【307】区域和检索—数组可修改
给定一个整数数组 nums,求出数组从索引 i 到 j (i ≤ j) 范围内元素的总和,包含 i, j 两点。

update(i, val) 函数可以通过将下标为 i 的数值更新为 val,从而对数列进行修改。

示例:

Given nums = [1, 3, 5]

sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8

这里我们用我们写好的线段树来实现

 private SegmentTree<Integer> segTree;
public NumArrayComplete(int[] nums) {

        if(nums.length != 0){
            Integer[] data = new Integer[nums.length];
            for(int i = 0 ; i < nums.length ; i ++)
                data[i] = nums[i];
            segTree = new SegmentTree<>(data, (a, b) -> a + b);
        }
    }

    public void update(int i, int val) {
        if(segTree == null)
            throw new IllegalArgumentException("Error");
        segTree.set(i, val);
    }

    public int sumRange(int i, int j) {
        if(segTree == null)
            throw new IllegalArgumentException("Error");
        return segTree.query(i, j);
    }```

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读