Prove that ∑ k = 0 n ∑ r = 0 k ( − 1 ) r ( n − k ) ! r ! = 1 \sum_{k=0}^n\sum_{r=0}^k \frac{(-1)^r}{(n-k)!r!} =1 k=0∑nr=0∑k(n−k)!r!(−1)r=1
题源自博主数学家的下午茶,我小红书给了解法,这里本来也是用来写这些数学题的,很久没更新了所以也记录一下。证明如下。证明:
令 F ( x ) = ∑ k = 0 n ∑ r = 0 k ( x ) r ( n − k ) ! r ! , x ∈ R ,则 F ( 0 ) = ∑ k = 0 n 1 k ! ,对 F ( x ) 求导 F ′ ( x ) = ∑ k = 0 n 1 ( n − k ) ! ∑ r = 1 k x r − 1 ( r − 1 ) ! = ∑ k = 0 n 1 ( n − k ) ! ( ∑ r = 0 k x r r ! − x k k ! ) = F ( x ) − 1 n ! ∑ k = 0 n C n k x k = F ( x ) − ( x + 1 ) n n ! 令 F(x) = \sum_{k=0}^n\sum_{r=0}^k \frac{(x)^r}{(n-k)!r!} ,x\in R,则F(0)= \sum_{k=0}^n \frac{1}{k!},对F(x)求导\\ \begin{aligned} F^{'}(x) &= \sum_{k=0}^n \frac{1}{(n-k)!} \sum_{r=1}^k \frac{x^{r-1}}{(r-1)!}= \sum_{k=0}^n \frac{1}{(n-k)!} (\sum_{r=0}^k \frac{x^{r}}{r!}-\frac{x^k}{k!})\\&=F(x)-\frac{1}{n!}\sum_{k=0}^{n}C_n^kx^k=F(x)-\frac{(x+1)^n}{n!} \end{aligned}