必读论文 | 卷积神经网络百篇经典论文推荐

作为深度学习的代表算法之一,卷积神经网络(Convolutional Neural Networks,CNN)在计算机视觉、分类等领域上,都取得了当前最好的效果。


卷积神经网络的前世今生


卷积神经网络的发展,最早可以追溯到 1962 年,Hubel 和 Wiesel 对猫大脑中的视觉系统的研究。
1998 年,著名计算机科学家 Yann LeCun 在论文 Gradient-Based Learning Applied to Document Recognition 中提出了 LeNet-5,将 BP 算法应用到神经网络结构的训练上,形成了当代卷积神经网络的雏形。
直到 2012 年,AlexNet 网络出现之后,神经网络开始崭露头角。在 Imagenet 图像识别大赛中,Hinton 组的论文 ImageNet Classification with Deep Convolutional Neural Networks 中提到的 Alexnet 引入了全新的深层结构和 dropout 方法,一下子把 error rate 从 25% 以上提升到了 15%,一举颠覆了图像识别领域。此后卷积神经网络声名大噪并蓬勃发展,广泛用于各个领域,在很多问题上都取得了当前最好的性能。
2015 年深度学习领域的三巨头 LeCun、Bengio、Hinton 在 Nature 上发表一篇综述文章 Deep Learning,系统地总结了深度学习的发展前世今生。
在 2016 年,CNN 再次给人们一个惊喜:谷歌研发的基于深度神经网络和搜索树的智能机器人“AlphaGo”在围棋上击败了人类,更惊喜的是谷歌在 Nature 专门发表了一篇文章来解释 AlphaGo,文章名字为 Mastering the game of Go with deep neural networks and tree search。
随后利用了 ResNet 和 Faster-RCNN 的思想,一年后的 Master 则完虐了所有人类围棋高手,达到神一般的境界,人类棋手毫无胜机。后来又有很多复现的开源围棋 AI,每一个都能用不大的计算量吊打所有的人类高手。
可以说,卷积神经网络是深度学习算法应用最成功的领域之一。


卷积神经网络百篇经典论文


研读卷积神经网络的经典论文,对于学习和研究卷积神经网络必不可缺。
根据相关算法,AMiner 从人工智能领域国际顶会/期刊中提取出“卷积神经网络”相关关键词,筛选并推荐了 100 篇经典必读论文。

需要论文资料的可以关注公众号【咕泡AI】回复:168 领取

这 100 篇论文大多发表于 2015 年至 2019 年间,主要发表在 CVPR、ICCV、ICML、NeuIPS 等计算机视觉顶级学术会议上。
在该领域发表论文最多的学者中,“神经网络之父”、“深度学习鼻祖”Hinton 与 Bengio 双双上榜,为深度学习研究持续贡献了力量。
按照这 100 篇经典论文的被引用量,我们挑选了其中的 TOP10 作简单评述。


Fully Convolutional Networks for Semantic Segmentation(CV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值