- 博客(8)
- 收藏
- 关注
原创 使用Pytorch的 C++ (CUDA)扩展实现卷积算子
在实现卷积算子时,将卷积算子等价转换为两个阶段:收集(collecting)和 线性变换(linear transform)。在收集阶段,“image to column” 和 “column to image” 过程分别在前向传播中将输入的。文件 setup.py,在项目目录中使用命令 python setup.py install 将其编译安装到python中。这里根据设备不同提供两种实现方式,一种是在CPU设备上串行实现,另一种是在GPU设备上并行实现。在线性变换阶段,卷积核权重对前向传播中得到的。
2024-08-26 12:48:51 510
原创 利用ChatGLM-6B批量总结计算机英文学术论文
概要整体流程软件和模型列表代码文件论文PDF文件批量下载使用 ChatGLM-6B 对文章进行简单的总结小结该阶段,首先使用 PyPDF2 提取 pdf 文件中的文章文本内容。为了简单,这里以提取摘要为例。之后,载入LLM,通过调用方法根据摘要内容(或其他提取到的内容)进行总结,具体方式其实就是聊天[doge]。最后将返回的内容整理并写入CSV文件中。
2024-03-14 16:32:56 519 1
原创 Tensorflow2.6实现Unet结构神经网络(3D卷积)识别脑部肿瘤并实现模型并行
tensorflow2 实现Unet结构神经网络,并尝试实现模型并行,但是并没有达到预期效果。
2022-06-18 09:21:17 2865 4
原创 python实现蚁群算法解决TSP问题
文章目录蚁群算法简单介绍蚁群算法概念转移概率算法流程信息素更新信息素更新公式三种信息素更新模型蚁周模型蚁密模型蚁量模型TSP问题简介城市坐标编码目标函数编程实现编程思路代码求解路径可视化蚁群算法简单介绍蚁群算法 模仿蚂蚁集体寻径行为 提出的算法,属于种群启发式搜索算法。算法通过蚂蚁在路径上留下信息素和大量蚂蚁的引入,诱使蚂蚁在选择 路径时 容易对更优的路径进行选择。蚂蚁的选择属于随机选择,目的地路径上的信息素和长度决定了选择该路径的可能性(概率),在路径长度固定的情况下,路径上信息素越多,蚂
2021-07-02 13:22:53 2763 7
原创 Python实现遗传算法解决TSP问题
Python实现遗传算法解决TSP问题遗传算法介绍生物学概念和算法概念之间的对应关系种群---编码集合种群适应环境的能力---目标函数环境阻力---适应度函数TSP问题简介遗传算法中TSP问题的处理城市坐标编码遗传算法中参数和函数设计目标函数适应度函数算法流程图交叉操作变异操作选择操作种群的相关参数编程实现编程思路代码路径可视化遗传算法介绍遗传算法是一种全局仿生优化算法,通过模拟环境和生物种群之间的相互作用以改进传统搜索算法。生物学概念和算法概念之间的对应关系生物学概念算法概念种
2021-06-27 18:23:54 8532 16
原创 c++实现简单的产生式推理系统
c++实现简单的产生式推理系统事实库推理规则编程思路代码程序运行结果事实库编号描述编号描述编号描述1有奶(grease)13黑色条纹(black strips)25鸟(bird)2有毛发(crinte)14黑色斑点(black scatters)26肉食动物(flesh-eater)3有羽毛(feather)15长腿(long legs)27有蹄动物(ungulate)4会飞(can fly)16长脖子(long neck
2021-05-14 13:15:24 2948
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人