代码随想录算法训练营day40

题目:343. 整数拆分、96.不同的二叉搜索树

参考链接:代码随想录

343. 整数拆分

思路:五部曲来走。dp数组,dp[i]用于记录拆i得到的最大乘积和,我们要求的也就是dp[n];递推公式,我们想拆分i,可以拆成i-1和1,这样dp[i]就是dp[i-1]或者就是i-1,也可以拆成i-2和2,这样就是2dp[i-2]和2(i-2)取最大值,综合讨论一下就是拆成i-j和j,然后比较dp[i-j]*j和(i-j)*j的最大值,这里因为dp[i-j]必须要进行至少拆成两个数,所以没有包含i-j,故我们还需要比较i-j,递推公式就是dp[i]=max(dp[i-j]*j,(i-j)*j);初始化,这里0和1根据题目无法拆分,也就无需初始化这两个,直接初始化dp[2]=1;遍历顺序和举例略。时间复杂度O(n^2)。

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n+1);//其实这里也不用初始化为0
        dp[2]=1;
        for(int i=3;i<=n;i++){
            for(int j=1;j<=i-2;j++){//最多只能拆i-2个,这样剩下2,如果再拆得只剩1,dp[1]就没有意义了
                dp[i]=max(dp[i],max(dp[i-j]*j,(i-j)*j));//注意C++的max只能有两个参数
            }//更新dp[i]需要一个循环遍历
        }
        return dp[n];
    }
};

看标答发现可以优化,即拆分的时候拆到一半就可以了,根据数学推导,拆分成相同的子数乘积比较大,故拆得超过一半必定不可能是最大值,当然我们写代码的时候上面其实就可以了:

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1);
        dp[2] = 1;
        for (int i = 3; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
            }
        }
        return dp[n];
    }
};

贪心方法需要数学证明略。

96.不同的二叉搜索树

思路:本题一看根本没有思路,主要要了解BST,就是左子树都小于头,右子树都大于头,而且每一个子树都是BST。使用dp五部曲。首先是dp[i]表示i个节点组成的不同BST个数;然后是递推公式,我们可以举例考虑3的情况和2来组合,首先是1为头结点,3可以插到1和2中间,也可以插到2右边,两种,然后是2为头节点,这时只有一种,最后是3为头结点,也是两种,共有5种。仔细对比可以发现规律,1为头时,两个节点的布局和n为2的时候一样,因为左右都是两个节点,3为头也是如此,2为头的时候,左右各一个节点,布局同n=1的情况。dp[3]就是将1,2,3分别为头结点的BST数量相加。1为头,左子树节点个数为0,右子数节点个数为2,即dp[0]*dp[2],2为头,dp[1]*dp[1],3为头dp[2]*dp[0]。
在这里插入图片描述
在这里插入图片描述
故对dp[i],我们也考虑1到i为头节点的数量相加,dp[i]=dp[0]*dp[i-1]+dp[1]*dp[i-2]+…+dp[i-1]*dp[i],这是重新回顾dp[i]的定义,可以定义为i个不同元素组成BST的数量;初始化,dp[0]=1,dp[1]=1,其他都可以推出来;遍历顺序从前往后;举例略。时间复杂度O(n^2)。

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n+1,0);
        dp[0]=1;
        dp[1]=1;
        for(int i=2;i<=n;i++){
            for(int j=0;j<=i-1;j++){
                dp[i]+=dp[j]*dp[i-1-j];
            }
        }
        return dp[n];
    }
};
  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
代码随想录算法训练是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14天的训练中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练还提供了每日的讨论知识点,例如在第15天的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16天的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值