- 博客(3)
- 收藏
- 关注
原创 NCL计算一元的偏相关/偏回归(剔除信号)
而在气候/气象,我们通常是对三个量进行思考,比如A,B,C,我们认为A和C都跟B有关系,那么去除与B之间的共同关系后,A和C之间是否有关系,这就很像我们研究北大西洋对亚洲的气候影响,我们在前面先剔除掉ENSO信号,排除ENSO的影响,这个剔除在这里就相当于了一个一元的偏回归或者相关。注意,如果做回归(因为回归是有单位的)我们用剔除掉B信号的A去和C再进行回归,去看A和C是否有关系,也就是说去看残差项之间是否有关系,但是为了确保这个信号不会被放大,偏相关/偏回归的本质是比较残差项之间的关系。
2023-12-21 19:05:11 921 3
原创 NCL计算每两个月的月平均数据(滑动平均计算)
近期需要计算每两个月的数据,故在month_to_season的基础上修改代码,以计算每两个月的月数据。其中month_to_season原代码中主要是采用滑动平均的方法来计算每三个月的平均。一般情况下NCL自带的month_to_season可以将月数据计算为季节数据。因此主要改动地方在第一个量和最后一个变量的计算。首先建立一个新的“season”其余则主要将1/3改成1/2。
2023-04-23 22:15:47 1203 2
原创 NCL将mm/month转换成mm/day数据
CRU的降水PRE数据单位为mm/month,PET数据的单位则是mm/day。建立月份数据,判断如果当年是闰年,则2月应为29天,不是28天。为了方便比较,需要将其转换为同一个量级。然后将每月的数据除以对应月的日数。首先判断每月的具体日数。
2023-04-23 21:52:39 601 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人