Elasticsearch N-gram分词器介绍 (7)

一.概述

  Ngram是一种基于统计语言模型的算法。Ngram基本思想是将文本里面的内容按照字节大小进行滑动窗口操作,形成长度是N的字节片段序列。此时每一个字节片段称为gram。对所有gram的出现频度进行统计,并且按照事先设定好的阈值进行过滤,形成关键gram列表,也就是这个文本的向量特征空间。列表中的每一种gram就是一个特征向量维度。

  应用场景:

    1)要分词的文本是:没有空格,没有停用词,无分隔符,或属于行业术语的文本等。

        例如:元器件行业型号:bu406, 搜索关键词 ”u40“ 希望能搜索到bu406的型号文档。

           无分隔符的手机号码13692345603,搜索关键词”9234“ 希望能搜索到13692345603的手机号文档,可提高检索效率(相较于wildcard检索和正则匹配检索来说)。

    2)要求输入搜索的关键词高亮显示。

        使用Ngram分词,结合match或者match_phrase检索实现。

    3)大数据量下,要求支持左右匹配的模糊搜索,不建议使用wildcrad匹配。

        使用Ngram分词以(存储)空间来换(检索)时间。

  分词示例:

    下面示例使用ngram的默认配置来分词, gram最小长度为1 ,gram最大长度为2

POST _analyze
{
  "tokenizer": "ngram",
  "text": "Quick Fox"
}

     分词结果:[ Q, Qu, u, ui, i, ic, c, ck, k, "k ", " ", " F", F, Fo, o, ox, x ]

二. Naram配置

  分词器接收以下参数:

    1)min_gram: 以gram为单位的最小字符长度,默认值为 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值