一.概述
Ngram是一种基于统计语言模型的算法。Ngram基本思想是将文本里面的内容按照字节大小进行滑动窗口操作,形成长度是N的字节片段序列。此时每一个字节片段称为gram。对所有gram的出现频度进行统计,并且按照事先设定好的阈值进行过滤,形成关键gram列表,也就是这个文本的向量特征空间。列表中的每一种gram就是一个特征向量维度。
应用场景:
1)要分词的文本是:没有空格,没有停用词,无分隔符,或属于行业术语的文本等。
例如:元器件行业型号:bu406, 搜索关键词 ”u40“ 希望能搜索到bu406的型号文档。
无分隔符的手机号码13692345603,搜索关键词”9234“ 希望能搜索到13692345603的手机号文档,可提高检索效率(相较于wildcard检索和正则匹配检索来说)。
2)要求输入搜索的关键词高亮显示。
使用Ngram分词,结合match或者match_phrase检索实现。
3)大数据量下,要求支持左右匹配的模糊搜索,不建议使用wildcrad匹配。
使用Ngram分词以(存储)空间来换(检索)时间。
分词示例:
下面示例使用ngram的默认配置来分词, gram最小长度为1 ,gram最大长度为2
POST _analyze
{
"tokenizer": "ngram",
"text": "Quick Fox"
}
分词结果:[ Q, Qu, u, ui, i, ic, c, ck, k, "k ", " ", " F", F, Fo, o, ox, x ]
二. Naram配置
分词器接收以下参数:
1)min_gram: 以gram为单位的最小字符长度,默认值为 1