Object 类

本文深入探讨Java中Object类的共性内容及equals(), hashCode(), getClass(), toString()等核心方法的实现与覆盖,解析对象比较、哈希码生成、对象信息获取等关键概念。

Object类

  • 所有类的根类。
  • Object是不断抽取而来的,具备所有对象都具备的共性内容

常用共性内容

boolean equals(Object obj)

class Person 
{
	private int age;
	Person(int age)
	{
		this.age = age;
	}
}
class ObjectDemo
{
	public static void main(String[] args)
	{
		Person p1 = new Person(20);
		Person p2 = new Person(20);
		Person p3 = p1;
		System.out.println(p1==p2);
		System.out.println(p1.equals(p2));
		System.out.println(p1.equals(p3));
	}
}

//	results : false false true
  • 比较的是地址;

equals() 方法覆盖

class Person extends Object
{
	private int age;
	Person(int age){
		this.age = age;
	}
}
	public boolean equals(Object obj){
		if (!(obj instanceof Person))
		{
			throw new ClassCastException("类型错误");
		}
		Person p = (Person)obj
		return this.age == obj.age;
	}
  • 一般都会覆盖equals,根据对象特有内容,建立判断对象是否相同的依据。

hashCode()

System.out.println(Integer.toHexString(p.hashCode()));
class Person extends Object
{
	private int age;
	Person(int age){
		this.age = age;
	}
	public boolean equals(Object obj){
		if (!(obj instanceof Person))
		{
			throw new ClassCastException("类型错误");
		}
		Person p = (Person)obj
		return this.age == obj.age;
	}
	public int hashCode()
	{
		return this.age;
	}
}

getClass()

在这里插入图片描述
在这里插入图片描述

  • getClass() 获得字节码文件对象

toString() 方法

System.out.println(p1.toString());//Person@61de33
System.out.println(p1.getClass().getName()+"$"+Integer.toHexString(
p1.hashCode()));//Person$61de33
项目资源包含:可运行源码+sql文件+LW; python3.8+django+mysql5.7+html 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 本项目采用了深度学习技术,如卷积神经网络(CNN),用于图像特征提取;同时结合了图像处理库OpenCV,用于图像数据的预处理和后处理。系统实现了基于图像特征的相似图像检索、图像分、目标检测等功能。通过提取图像的特征向量,不仅可以实现精准的图像搜索和分,还能帮助用户快速准确地识别图像中的目标物体,具有较高的准确率和效率。通过本项目的设计与实现,可以有效解决在大数据环境下处理海量图像数据时面临的特征提取、图像分析和应用问题,为图像信息的挖掘与利用提供了新的途径和解决方案,具有广泛的应用前景和推广价值。 (1)特征提取模块:使用局部特征描述符(如SIFT、SURF)或深度学习特征提取方法,对海量图像中的特征进行抽取和表示,以便后续的相似度计算。 (2)相似图像搜索模块:用户上传查询图像或输入描述后,系统利用特征提取的结果进行相似图像检索,找出与查询图像最相似的图像,并返回给用户。 (3)标签搜索模块:系统对图像进行自动标签或标注,用户可以根据这些标签进行图像搜索,方便快速地找到感兴趣的内容。 (4)检索结果排序模块:根据图像的相关度或其他指标,系统对检索结果进行排序,确保用户看到最相关的图像在前面展示。 (5)图像分模块:系统通过训练模型对图像进行分,将其归入不同的别,为用户提供更精细的检索和浏览功能。 (6)图像清晰度评估模块:系统可以评估图像的清晰度,排除模糊或质量较低的图像,提高搜索结果的质量和准确性。 (7)图像信息提取模块:系统可以提取图像中的关键信息,如物体、人脸等,为用户提供更多的图像认知和分析功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值