人工智能
文章平均质量分 80
Catigeart
这个作者很懒,什么都没留下…
展开
-
GNN的各变体和框架
Author: CatigeartGitHub: https://github.com/Catigeart?tab=repositoriesGCN 图卷积网络原理:类比傅里叶变换,每个图节点有不同强度的信号,对其进行图傅里叶变换分解,并分析其相邻节点信号平滑度,通过信号的流动实现周边信息的传递。拉普拉斯矩阵L=D−AL=D-AL=D−A,其中DDD是一个对角矩阵,DiiD_{ii}Dii表示节点vi{v_i}vi的度,A是邻接矩阵。LLL是一个反映图信号平滑度的算子;LsymL_{sym.原创 2021-01-02 23:22:38 · 441 阅读 · 0 评论 -
神经网络基础概念汇总
Author: CatigeartGitHub: https://github.com/Catigeart?tab=repositories1 机器学习基本概念机器学习分类:根据训练数据是否有标签:监督学习、半监督学习、无监督学习监督学习根据算法输出的形式划分:分类问题和回归问题机器学习流程:特征工程建立模型确定损失函数和进行优化求解:过拟合和欠拟合常见损失函数平方损失函数(回归问题):L(y,f(x;θ))=1N∑i=1N(yi−f(xi;θ))2L(y,.原创 2021-01-02 21:10:44 · 203 阅读 · 0 评论 -
[个人笔记]机器学习(周志华)
1 绪论基本术语数据集、样本、属性、特征、属性值、树形控件、样本空间、特征向量、维数、训练、训练数据、训练样本、训练集、标签、样例监督学习:分类、回归无监督学习:聚类归纳偏好与没有免费的午餐定理:总误差与学习算法无关,因此谈论学习算法的优劣必须针对具体的学习问题,学习算法自身的归纳偏好要和问题相配2 模型评估和选择训练集、测试集、验证集精度 = 1-错误率训练误差、泛化误差、过拟合、欠拟合、测试集、测试误差留出法、k折交叉验证法调参、性能度量——性能度量的指标查准率=正/预测正原创 2021-01-02 16:27:48 · 184 阅读 · 0 评论