Constructing Roads
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31254 Accepted Submission(s): 11800
Problem Description
There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected.
We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.
Input
The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.
Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.
Output
You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum.
Sample Input
3 0 990 692 990 0 179 692 179 0 1 1 2
Sample Output
179
AC代码:
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int MAX = 105;
int G[MAX][MAX], ans = 0;
struct node{
int u, v, w;
bool operator < (const node a) const{
return w < a.w;
}
};
vector<node> V;
int Pre[MAX];
int find(int a){
int c = a;
while(a != Pre[a])
a = Pre[a];
Pre[c] = a;
return a;
}
bool join(int u, int v){
int fu = find(u), fv = find(v);
if(fu != fv){
Pre[fv] = fu;
return true;
}
return false;
}
void solve(){
for(int i = 0; i < V.size(); i++)
//利用并查集,如果连通成功,这个边的权值计入答案
if(join(V[i].u, V[i].v)) ans += V[i].w;
printf("%d\n",ans);
}
int main(){
int n;
while(scanf("%d",&n)!=EOF){
//初始化
V.clear();
ans=0;
for(int i = 1; i <= n; i++) Pre[i] = i;
//建图
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
scanf("%d",&(G[i][j]));
int k;scanf("%d",&k);
while(k--){//把已经连同的村庄 w 设置为0
int x,y;scanf("%d%d",&x,&y);
G[x][y] = G[y][x] = 0;
}
//图中很多数据多余,只要右上三角的值就可以
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++){
if(j > i){
node a;
a.u = i,a.v = j, a.w = G[i][j];
V.push_back(a);
}
}
//Kruskal算法,按边的权值排序,然后依次连同
sort(V.begin(), V.end());
solve();
}
return 0;
}
最小生成树算法解析

本文深入探讨了如何使用最小生成树算法解决村庄间道路建设问题,以实现所有村庄的最短连接路径。通过实例讲解了Kruskal算法的实现过程,包括使用并查集进行节点连通性判断,以及如何通过边的权值排序来逐步构建最小生成树。
960

被折叠的 条评论
为什么被折叠?



