HDU-1102 Constructing Roads (最小生成树+并查集)

最小生成树算法解析
本文深入探讨了如何使用最小生成树算法解决村庄间道路建设问题,以实现所有村庄的最短连接路径。通过实例讲解了Kruskal算法的实现过程,包括使用并查集进行节点连通性判断,以及如何通过边的权值排序来逐步构建最小生成树。

Constructing Roads

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31254    Accepted Submission(s): 11800


 

Problem Description

There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected. 

We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.

 

 

Input

The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.

Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.

 

 

Output

You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum. 

 

 

Sample Input


 

3 0 990 692 990 0 179 692 179 0 1 1 2

 

 

Sample Output


 

179

AC代码:

#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int MAX = 105;
int G[MAX][MAX], ans = 0;
struct node{
    int u, v, w;
    bool operator < (const node a) const{
        return w < a.w;
    }
};
vector<node> V;
int Pre[MAX];

int find(int a){
    int c = a;
    while(a != Pre[a])
        a = Pre[a];
    Pre[c] = a;
    return a;
}
bool join(int u, int v){
    int fu = find(u), fv = find(v);
    if(fu != fv){
        Pre[fv] = fu;
        return true;
    }
    return false;
}
void solve(){
    for(int i = 0; i < V.size(); i++)
        //利用并查集,如果连通成功,这个边的权值计入答案
        if(join(V[i].u, V[i].v)) ans += V[i].w;
    printf("%d\n",ans);
}
int main(){
    int n;
    while(scanf("%d",&n)!=EOF){
        //初始化
        V.clear();
        ans=0;
        for(int i = 1; i <= n; i++) Pre[i] = i;
        //建图
        for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            scanf("%d",&(G[i][j]));
        int k;scanf("%d",&k);
        while(k--){//把已经连同的村庄 w 设置为0
            int x,y;scanf("%d%d",&x,&y);
            G[x][y] = G[y][x] = 0;
        }
        //图中很多数据多余,只要右上三角的值就可以
        for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++){
            if(j > i){
                node a;
                a.u = i,a.v = j, a.w = G[i][j];
                V.push_back(a);
            }
        }
        //Kruskal算法,按边的权值排序,然后依次连同
        sort(V.begin(), V.end());
        solve();
    }
    return 0;
}

 

汽车与停车位关键点检测数据集 一、基础信息 • 数据集名称:汽车与停车位关键点检测数据集 • 图片数量: 训练集:308张图片 验证集:47张图片 测试集:22张图片 总计:377张实际场景图片 • 训练集:308张图片 • 验证集:47张图片 • 测试集:22张图片 • 总计:377张实际场景图片 • 分类类别: car(汽车):常见交通工具,用于检测车辆位置和形状。 parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • car(汽车):常见交通工具,用于检测车辆位置和形状。 • parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • 标注格式:YOLO格式,包含关键点坐标标签,适用于关键点检测任务。 • 数据格式:图片文件来源于真实环境,覆盖多种停车场景。 二、适用场景 • 智能停车管理系统开发:用于自动检测停车位占用状态和汽车位置,提升停车场管理效率。 • 自动驾驶与辅助驾驶系统:帮助车辆识别可用停车位并精准定位,支持自动泊车功能。 • 城市交通监控与规划:分析停车位使用模式和汽车分布,优化城市交通资源分配。 • 计算机视觉研究:支持关键点检测、目标定位等任务,推动自动驾驶和智能交通算法创新。 三、数据集优势 • 关键点标注精准:每个标注包含多个关键点坐标,精确描述汽车和停车位的形状与位置,确保模型学习细粒度特征。 • 场景多样性:数据涵盖不同环境和角度,增强模型在复杂场景下的泛化能力和鲁棒性。 • 格式兼容性强:YOLO标注格式易于集成到主流深度学习框架,方便快速部署和实验。 • 实用价值突出:直接应用于智能交通和自动驾驶领域,为停车管理和车辆导航提供可靠数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值