NNI样例实践-以mnist-pytorch为样例

本文通过mnist-pytorch实例介绍了使用NNI进行自动化的超参数调优过程。在本地环境下,通过TPE算法搜索最佳配置,分析了不同超参数组合下模型的表现及运行效率。
部署运行你感兴趣的模型镜像

NNI样例分析文档——以mnist-pytorch为样例

1. 运行代码

  • search_space.json
{
    "batch_size": {"_type":"choice", "_value": [16, 32, 64, 128]},
    "hidden_size":{"_type":"choice","_value":[128, 256, 512, 1024]},
    "lr":{"_type":"choice","_value":[0.0001, 0.001, 0.01, 0.1]},
    "momentum":{"_type":"uniform","_value":[0, 1]}
}
  • config.yml
authorName: default
experimentName: example_mnist_pytorch
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner:
  #choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner
  #SMAC (SMAC should be installed through nnictl)
  builtinTunerName: TPE
  classArgs:
    #choice: maximize, minimize
    optimize_mode: maximize
trial:
  command: python mnist.py
  codeDir: .
  gpuNum: 0

设置训练次数:10;最长运行时间:60m;tuner:TPE。

2.运行结果

因为没有GPU,所以执行速度很慢,1h内成功运行了4次,运行结果如下:

  • Overview:
    在这里插入图片描述

  • Trials Detail:
    在这里插入图片描述

  • Default Metric:
    在这里插入图片描述

  • Hyper Parameter:
    在这里插入图片描述

  • Trial Duration:
    在这里插入图片描述

3.运行结果分析

  • Default Metric
    在这里插入图片描述
    如上图, 横坐标Trial=2时,测试的精确度最小,此时参数为:
    {"batch-size":64,"hidden_size":256,"lr":0.01,"momentum":0.5929}
  • Hyper Parameter:
    在这里插入图片描述
    如图所示:测试精度最高的参数为:
    {"batch-size":64,"hidden_size":256,"lr":0.01,"momentum":0.5929}
    其次是:
    {"batch-size":64,"hidden_size":1024,"lr":0.001,"momentum":0.2473}
  • 一次实验的结果:
    在这里插入图片描述
  • 最终参数的选择:
    首先根据Hyper Parameter的结果,挑选出实验结果较好的几个参数组合,然后再看Trial Duration中的结果,挑选运行时间较短的,并且考虑Intermediate中loss收敛的速度。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值