- 博客(50)
- 资源 (20)
- 收藏
- 关注
原创 目标检测回归损失函数 IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU损失函数分析
目标检测回归损失函数 IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU损失函数分析
2023-02-08 16:25:16
1312
1
原创 Kinect与TOF、双目、结构光相机比较相机国产、非国产统计参数对比分析
Kinect与TOF、双目、结构光相机比较相机国产、非国产统计参数对比分析
2023-01-19 09:40:39
1726
原创 常用损失函数总结(L1 loss、L2 loss、Negative Log-Likelihood loss、Cross-Entropy loss、Hinge Embedding loss、Margi)
常用损失函数总结(L1 loss、L2 loss、Negative Log-Likelihood loss、Cross-Entropy loss、Hinge Embedding loss、Margi)损失函数分类与应用场景损失函数可以分为三类:回归损失函数(Regression loss)、分类损失函数(Classification loss)和排序损失函数(Ranking loss)。应用场景:回归损失:用于预测连续的值。如预测房价、年龄等。分类损失:用于预测离散的值。如图像分类,语义分割等。
2023-01-18 10:15:51
320
原创 Labelme json 批量转datasets 解决默认显示不同色和id问题,包含五个结果(img_png,label_png,label_viz_png,info,names)
labelme json 转为,datasets:包含五个结果(img_png,label_png,label_viz_png,info,names)经常会出现label.png相同类别显示颜色不同,且label_viz.png显示id也不同,虽然证实了不影响训练,但是还是想着修改一下。以便完美!!
2022-11-02 11:16:24
95
原创 coco 2 htht数据转换代码
# -*- coding: UTF-8 -*-__data__ = "2022.3.30"__description__ = "Convert the PIE segmentation data format to VOC or COCO " \ "or Convert the VOC/COCO segmentation data format to pie"__function__ = ["del_file", "pie_to_voc", "voc_to_pie
2022-05-17 17:17:35
110
原创 Sequencer: Deep LSTM for Image Classification(LSTM在CV领域杀出一条血路,完美超越Swin与ConvNeXt等前沿算法)
Sequencer: Deep LSTM for Image Classification
2022-05-06 09:19:54
1181
7
原创 FAN(Understanding The Robustness in Vision Transformers)论文解读,鲁棒性和高效性超越ConvNeXt、Swin
FAN(Understanding The Robustness in Vision Transformers)论文解读,鲁棒性和高效性超越ConvNeXt、Swin
2022-05-05 16:57:26
1725
原创 常用损失函数总结(L1 loss、L2 loss、Negative Log-Likelihood loss、Cross-Entropy loss、Hinge Embedding loss、Margi)
常用损失函数总结(L1 loss、L2 loss、Negative Log-Likelihood loss、Cross-Entropy loss、Hinge Embedding loss、Margi)
2022-05-05 15:26:09
2105
原创 Focal Loss升级 | E-Focal Loss让Focal Loss动态化,类别极端不平衡也可以轻松解决
Focal Loss升级 | E-Focal Loss让Focal Loss动态化,类别极端不平衡也可以轻松解决1简介相关工作2.1 普通目标检测1、两阶段目标检测2、一阶段目标检测2.2 Long-Tailed 目标检测3本文方法3.1 再看Focal Loss3.2 Equalized Focal Loss1、Focusing Factor2、Weighting FactorPyTorch实现如下:尽管最近长尾目标检测取得了成功,但几乎所有的长尾目标检测器都是基于两阶段范式开发的。在实践中,一阶段检
2022-03-09 10:02:00
932
原创 使用Swin-Transformer-Semantic-Segmentation训练自己的数据(语义分割,自己做数据)
Swin transformer 模型训练
2022-02-25 10:05:24
5686
44
翻译 Jetson_build Jetson平台编译PaadlePalddle
Jetson平台编译指南说明NVIDIA Jetson设备是具有NVIDIA GPU的嵌入式设备,可以将目标检测算法部署到该设备上。本文档是在Jetson硬件上部署PaddleDetection模型的教程。本文档以Jetson TX2硬件、JetPack 4.3版本为例进行说明。Jetson平台的开发指南请参考NVIDIA Jetson Linux Developer Guide.Jetson环境搭建Jetson系统软件安装,请参考NVIDIA Jetson Linux Developer Gu
2021-12-01 17:54:29
198
原创 自动调参NNI nnictl 支持的命令
nnictl 介绍nnictl是一个命令行工具,用来控制 NNI Experiment,如启动、停止、继续 Experiment,启动、停止 NNIBoard 等等。命令nnictl 支持的命令:nnictl creatennictl resumennictl viewnnictl stopnnictl updatennictl trialnnictl topnnictl experimentnnictl platf ormnnictl confi gnnictl lognn
2021-11-22 17:11:27
2262
1
原创 自动调参NNI 模型设置与log信息设置
Experiment 配置创建 Experiment 所需要的配置文件。 本文介绍了配置文件的内容。注解此文档的字段使用 camelCase 法命名。 对于 Python 库 nni.experiment,需要转换成 snake_case形式。 在此文档中,字段类型被格式化为 Python 类型提示。 因此,JSON 对象被称为 dict,数组被称为 list。一些字段采用文件或目录的路径, 除特别说明,均支持绝对路径和相对路径,~ 将扩展到 home 目录。 在写入 YAML文件时,相对路径
2021-11-22 10:47:35
1482
2
原创 Dockfile 安装tensorflow gdal遥感领域
# 基础镜像, cuda为10.2.0/10.1.0,ubuntu18.04FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04# 配置程序依赖环境RUN apt-get update && apt-get install -y --no-install-recommends \ build-essential \ cmake \ curl \ wget \ ca-
2021-11-21 08:55:13
933
原创 YOLOV5 参数关键部分含义指示
parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='models/yolov5x.yaml', help='opt.cfg 模型配置和网络结构的yaml文件路径') parser.add_argument('--data', type=str, default='data/test.yaml', ...
2021-11-19 17:25:23
4873
2
原创 labelme json 生成coco2017标准数据集格式代码
# -*- coding:utf-8 -*-# !/usr/bin/env pythonimport argparseimport jsonimport randomimport matplotlib.pyplot as pltimport skimage.io as ioimport cv2from labelme import utilsimport numpy as npimport globimport PIL.Imagefrom PIL import Imagefrom
2021-11-19 16:34:25
341
原创 遥感领域划窗裁剪数据空白数据剔除,语义分割
# -*- coding: utf-8 -*-"""Created on Wed Sep 1 14:53:32 2021@author: Administrator"""from glob import globimport cv2import osfile = glob(r'C:/Users/Administrator/Desktop/datasets/imgs/*.tif')label_path = 'C:/Users/Administrator/Desktop/datasets
2021-11-18 15:51:59
73
原创 数据集测试与训练集按照比例分配代码
# -*- coding: utf-8 -*-"""Created on Wed Sep 1 14:53:32 2021@author: Administrator"""from glob import globimport cv2import osimport randomrate_val_train = 0.2file = glob(r'C:/Users/Administrator/Desktop/wuxi_datasets/images/*.tif')label_path
2021-11-18 15:50:04
472
原创 YOLOX训练自己的数据集(包含自己数据集,预训练模型,代码公开),踩扁很多细节坑全部补充
首先 看下作者给的性能对比图YOLOX 是旷视开源的高性能检测器。旷视的研究者将解耦头、数据增强、无锚点以及标签分类等目标检测领域的优秀进展与 YOLO 进行了巧妙的集成组合,提出了 YOLOX,不仅实现了超越 YOLOv3、YOLOv4 和 YOLOv5 的 AP,而且取得了极具竞争力的推理速度。YOLOX: Exceeding YOLO Series in 2021作者单位:旷视科技代 码:https://github.com/Megvii-BaseDetection/YOLO
2021-11-17 17:29:47
7785
17
原创 labelme2VOC2007数据格式代码
原始数据是jpg和json。jpg可自行修改。2012数据集修改日期即可import osimport numpy as npimport codecsimport jsonfrom glob import globimport cv2import shutilfrom sklearn.model_selection import train_test_split#1.标签路径labelme_path = "./" #原始labelme标注数据路径saved_
2021-11-17 11:17:10
235
1
VOC2007.zip
2021-11-17
ubuntu18.04/20.04 等系统, 安装微信文字显示方框解决方案所需文字插件
2021-10-30
yolov4.conv.137
2020-06-24
yoloV4自己的数据集.zip
2020-04-29
python调用C与C++语言.pdf
2019-09-03
2012之前版本matlab过期出现打开时无线激活状态的license.lic文件
2019-06-19
opencv与c++相机双目完整版.zip
2019-06-19
C++ 和opencv 利用多线程的方法实现图像的识别检测模板程序,速度大大提升。有利于工程应用和学习
2018-10-08
opencv 在图像中绘制点,直线,线段,矩形,圆形,椭圆的方法,并用函数实现,代码非常有用,简单易懂。
2018-10-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人