SGM: Sequence Generation Model for Multi-Label Classification(用于多标签分类的序列生成模型)

2018年最好的nlp文章,先说结论,有些参考的价值可以分享一下:

总结:

SSG模型细节和实现。

模型图:

    

 Encoder

令  (X1,X2,X3,Xm)为 m 个单词的序列。我们首先通过一个嵌入矩阵 (embedding matrix),把 嵌入成一个稠密的嵌入向量  ,  |V|是词汇表的大小, k 是嵌入向量的维度。

我们使用一个bidirectional LSTM 从两个方向上来读取文本序列 x,并且计算每个单词的隐藏状态:

我们通过连接两个方向上的隐藏状态来得到第  i个单词的最终隐藏状态,

这使得状态具有以第 i 个单词为中心的序列信息。

这里的pack可以去pytorch官网搜一下这个官方定义的函数

pack_padded_sequence

当模型预测不同的标签的时候,并不是所有的单词贡献相同。注意力机制会通过关注文本序列中的不同部分,产生一个上下文向量 (context vector)。

特别的,本文采用的 Attention 是 global attention,什么是global a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值