P1567 统计天数

题目背景
统计天数

题目描述
炎热的夏日,KC非常的不爽。他宁可忍受北极的寒冷,也不愿忍受厦门的夏天。最近,他开始研究天气的变化。他希望用研究的结果预测未来的天气。

经历千辛万苦,他收集了连续N(1<=N<=10^7)天的最高气温数据。

现在,他想知道最高气温一直上升的最长连续天数。

输入输出格式
输入格式:

*1行:一个整数N。1<=N<=10^7

*2行:N个空格隔开的整数,表示连续N天的最高气温。0<=最高气温<=10^9。

输出格式:
*1行:一个整数,表示最高气温一直上升的最长连续天数。

输入输出样例
输入样例#1:

10
1 2 3 2 4 5 6 8 5 9

输出样例#1:
5
说明
时间限制1s 内存限制128MB

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>

using namespace std;
int main()
{
    int n;
    cin>>n;
    int before,after;
    cin>>before;
    int count=1;
    int max=0;
    for(int i=1;i<n;i++)
    {
        cin>>after;
        if(after>before)
        {
            count++;
            if(count>max)
                max=count;
        }
        else count=1;
        before=after;
    }
    cout<<max;
    return 0;
}
一元线性回归是SPSS中常用的统计分析方法之一。它用于研究自变量与因变量之间的线性关系,并通过回归方程描述这种关系。下面以某医院的病人年龄和其住院天数为例进行一元线性回归分析。 首先,我们收集了100位病人的数据,其中自变量是病人的年龄,因变量是病人的住院天数。我们将这些数据输入SPSS软件进行分析。 在SPSS软件中,首先选择"回归",然后选择"线性",将因变量(住院天数)拖放到"因变量"栏中,将自变量(年龄)拖放到"解释变量"栏中。 在回归分析结果中,我们关注回归方程的系数、显著性和决定系数R^2。 回归方程的系数是关键指标之一,它告诉我们自变量(年龄)对因变量(住院天数)的影响程度。如果系数为正数,则表示自变量的增加与因变量的增加有正相关关系;如果系数为负数,则表示自变量的增加与因变量的减少有负相关关系。通过系数的大小,我们可以判断自变量对因变量的影响强弱。 显著性水平是判断系数是否统计上显著的指标。在假设检验中,一般认为当p值小于0.05时,系数是显著的,即存在影响关系;当p值大于0.05时,系数是不显著的,即没有影响关系。 决定系数R^2可以解释回归方程的拟合程度,其取值范围在0到1之间。R^2的值越接近1,说明回归方程可以更好地解释因变量的变异;R^2的值越接近0,说明回归方程对因变量的解释能力较弱。 通过分析回归方程的系数、显著性和决定系数R^2,我们可以得出结论:病人的年龄对住院天数有显著影响,且年龄与住院天数呈正相关关系。这些可以为医院制定合理的住院时间和医疗方案提供科学依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值