shape=(5,)这种是一维数组,shape=(5,1)这是列向量,shape=(5,2)这是矩阵,请在神经网络和回归问题的代码中拒绝使用数组这种数据类型,不然会出现神奇的bug
a=np.array([…],[…])
a.shape #可以输出a的(行,列) 所谓块:[ […]
[…]
[…]
]
a.reshape ( , ) #修改a的行,列
t=np.arange(24).reshape((2,3,4))
#arange会产生0到24的一个数组,排成2个块,每个块3行4列
t.reshape((4,6)) #变成二维,只要数据个数相同,这种类似return的语句,t还是原来那个三维数组
当不知道t的形状时,又想把它变成一维数组
t1=t.reshape((t.shape[0] * t.shape[1] , )) 的效果和下面这个语句是一样的
t.flatten() #直接展开
shape[0]是t的行数
shape[1]是t的列数
numpy帮助处理数值型数据
在np.array([…])与np.arange(… , …)是一样的,都是创立一个数组,前者中括号内还可以用range()
type(a), 或者a.dtype都可以看a的数据类型
t1=np.array([random.random() for i in range(10)]) #取10个随机数
t2=np.round(t,2) #对t取2位小数