数据分析(二):numpy

本文介绍了NumPy库中的数据处理方法,强调了在神经网络和回归问题中避免使用一维数组的原因,讲解了数组的shape属性、reshape函数、flatten方法以及数据类型的查看。此外,还涵盖了数组的选择、修改、拼接、查找最值位置等操作,并提醒了处理缺失值的正确方式。
摘要由CSDN通过智能技术生成

shape=(5,)这种是一维数组,shape=(5,1)这是列向量,shape=(5,2)这是矩阵,请在神经网络和回归问题的代码中拒绝使用数组这种数据类型,不然会出现神奇的bug

a=np.array([…],[…])
a.shape #可以输出a的(行,列) 所谓块:[ […]
[…]
[…]
]

a.reshape ( , ) #修改a的行,列
t=np.arange(24).reshape((2,3,4))
#arange会产生0到24的一个数组,排成2个块,每个块3行4列
t.reshape((4,6)) #变成二维,只要数据个数相同,这种类似return的语句,t还是原来那个三维数组

当不知道t的形状时,又想把它变成一维数组
t1=t.reshape((t.shape[0] * t.shape[1] , )) 的效果和下面这个语句是一样的
t.flatten() #直接展开
shape[0]是t的行数
shape[1]是t的列数

numpy帮助处理数值型数据
在np.array([…])与np.arange(… , …)是一样的,都是创立一个数组,前者中括号内还可以用range()

type(a), 或者a.dtype都可以看a的数据类型
t1=np.array([random.random() for i in range(10)]) #取10个随机数
t2=np.round(t,2) #对t取2位小数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值