高数第七章知识点框架

本文深入探讨高等数学中多元函数微分学的核心概念,包括二元函数的极限与连续性、偏导数与全微分、多元复合函数求偏导的方法、隐函数的求导公式以及多元函数极值的求解技巧。特别强调了拉格朗日乘子法在有条件极值问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.二元函数的极限和连续性

  • 掌握求极限的三种方法。
  • 通过求极限证明函数的连续性。

2.偏导与全微分

  • 会求偏导以及证明偏导存在。
  • 掌握全微分的形式,会求全微分。
  • 可微的充要条件。
  • 函数可微,连续性,偏导存在之间的关系。

3.多元复合函数求偏导

  • 正向求偏导。
  • 求偏导的反问题。
    (已知偏导或满足的关系,求待定常数,函数等.)

    1.偏积分法。
    2.转化为所求函数的微分方程,通过解微分方程求解。

4.隐函数的求导公式

  • 掌握三种方法之一即可。

5.多元函数的极值

  • 无条件极值(会解题即可)。
  • 有条件极值(掌握拉格朗日乘子法)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值