给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
int minPathSum(int** grid, int gridSize, int* gridColSize){
int row = gridSize;
int line = gridColSize[0];
if(row == 0 || line == 0)
{
return 0;
}
int **dp = (int**)malloc(sizeof(int*) * row);
for(int i = 0; i < row; i++)
{
int *temp = (int*)malloc(sizeof(int) * line);
dp[i] = temp;
}
dp[0][0] = grid[0][0];
for(int i = 1; i < row; i++)
{
dp[i][0] = dp[i-1][0] + grid[i][0];
}
for(int i = 1; i < line; i++)
{
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
for(int i = 1; i < row; i++)
{
for(int j = 1; j < line; j++)
{
if(dp[i-1][j] > dp[i][j-1])
{
dp[i][j] = dp[i][j-1] + grid[i][j];
}
else
{
dp[i][j] = dp[i-1][j] + grid[i][j];
}
}
}
return dp[row-1][line-1];
}
思路:动态规划
找出一条从左上角到右下角的路径,使得路径上的数字总和为最小,这样可以记录到达本格子的最短路径,那么在最后的终点就可以得知最短路径数。
状态转移方程:dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]