云计算 第六章 云平台应用(1)从GFS到Hadoop HDFS2.0设计原理与基本构成 Yarn设计原理与基本构成 MapReduce2.0基本原理与架构HDFS分布式存储系统 YARN:分布式计算

本文介绍了云平台应用,重点讲解了从Google的GFS到Hadoop的演进,包括HDFS2.0、YARN和MapReduce2.0的设计原理。GFS是一个分布式文件系统,而MapReduce是一种分布式并行计算模型。Hadoop是GFS和MapReduce的开源实现,HDFS是其分布式存储部分,YARN则是资源管理和调度框架。
摘要由CSDN通过智能技术生成

关注公众号凡花花的小窝,收获更多的考研计算机专业编程相关的资料
第6章 云平台应用
目录
从GFS到Hadoop
HDFS2.0设计原理与基本构成
Yarn设计原理与基本构成
MapReduce2.0基本原理与架构

海量数据管理技术----GFS
Google文件系统(Google file system)是一个大型的分布式文件系统。它为Google云计算提供海量存储,并且与Chubby,MapReduce以及BigTable等技术结合十分紧密,形成Google的云计算解决方案。其中,Google的三驾马车:Google fs、Mapreduce、Bigtable。
GFS是一个可扩展的分布式文件系统,用于大型的、分布式的、对大量数据进行访问的应用。它运行于廉价的普通硬件上,提供容错功能。
MapReduce是针对分布式并行计算的一套编程模型。就像文件系统需要数据库来存储结构化数据一样,GFS也需要Bigtable来存储结构化数据。

1)BigTable 是建立在 GFS ,Scheduler ,Lock Service 和 MapReduce 之上的。
2)每个Table都是一个多维的稀疏图
3)为了管理巨大的Table,把Table根据行分割,这些分割后的数据统称为:Tablets。每个Tablets大概有 100-200 MB,每个机器存储

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习记录wanxiaowan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值