ByteTrack模型应用自己的检测器效果不好

有一个巨坑的地方就是,ByteTrack官方是只检测人的,具有针对性的进行了处理。
for t in online_targets:
	tlwh = t.tlwh
	 tid = t.track_id
	 #vertical = tlwh[2] / tlwh[3] > args.aspect_ratio_thresh
	 #if tlwh[2] * tlwh[3] > args.min_box_area and not vertical:
     online_tlwhs.append(tlwh)
     online_ids.append(tid)
     online_scores.append(t.score)
     results.append(
         f"{frame_id},{tid},{tlwh[0]:.2f},{tlwh[1]:.2f},{tlwh[2]:.2f},{tlwh[3]:.2f},{t.score:.2f},-1,-1,-1\n")

需要将上述注释部分的代码删掉,一般人的bbox都是偏窄高,所以代码中针对bbox进行了约束,如果我们用的是多个类别追踪,需要将上述代码删除,不然效果很差。本人就是没仔细看代码,郁闷了一天,效果真的差劲。。。。

评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

武汉鸠摩智

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值