算法训练第四十五天|70. 爬楼梯 (进阶)、322. 零钱兑换、279.完全平方数

70. 爬楼梯 (进阶)

题目链接:70. 爬楼梯 (进阶)
参考:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85%E7%89%88%E6%9C%AC.html

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1: 输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。

  • 1 阶 + 1 阶
  • 2 阶

示例 2: 输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。

  • 1 阶 + 1 阶 + 1 阶
  • 1 阶 + 2 阶
  • 2 阶 + 1 阶

思路

之前讲这道题目的时候,因为还没有讲背包问题,所以就只是讲了一下爬楼梯最直接的动规方法(斐波那契)。

这道题目 我们在动态规划:爬楼梯 中已经讲过一次了,原题其实是一道简单动规的题目。

既然这么简单为什么还要讲呢,其实本题稍加改动就是一道面试好题。

改为:一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

1阶,2阶,… m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时大家应该发现这就是一个完全背包问题了!

和昨天的题目动态规划:377. 组合总和 Ⅳ 基本就是一道题了。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。

  1. 确定递推公式

求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]

那么递推公式为:dp[i] += dp[i - j]

  1. dp数组如何初始化
    既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果

  1. 确定遍历顺序

这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

所以需将target放在外循环,将nums放在内循环。

每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

  1. 举例来推导dp数组

和昨天那道动态规划:377. 组合总和 Ⅳ 一样

以上分析完毕,C++代码如下:

class Solution {
public:
    int climbStairs(int n, int m) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) { // 遍历背包
            for (int j = 1; j <= m; j++) { // 遍历物品
                if (i - j >= 0) dp[i] += dp[i - j];
            }
        }
        return dp[n];
    }
};

代码中m表示最多可以爬m个台阶,代码中把m改成2就是本题70.爬楼梯可以AC的代码了。

总结

本题看起来是一道简单题目,稍稍进阶一下其实就是一个完全背包!

如果我来面试的话,我就会先给候选人出一个 本题原题,看其表现,如果顺利写出来,进而在要求每次可以爬[1 - m]个台阶应该怎么写。

顺便再考察一下两个for循环的嵌套顺序,为什么target放外面,nums放里面。

这就能考察对背包问题本质的掌握程度,候选人是不是刷题背公式,一眼就看出来了。

这么一连套下来,如果候选人都能答出来,相信任何一位面试官都是非常满意的。

本题代码不长,题目也很普通,但稍稍一进阶就可以考察完全背包,而且题目进阶的内容在leetcode上并没有原题,一定程度上就可以排除掉刷题党了,简直是面试题目的绝佳选择!

322. 零钱兑换

题目链接:322. 零钱兑换
参考:https://programmercarl.com/0322.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D%A2.html

题目描述

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

示例 1:

  • 输入:coins = [1, 2, 5], amount = 11
  • 输出:3
  • 解释:11 = 5 + 5 + 1

示例 2:

  • 输入:coins = [2], amount = 3
  • 输出:-1

示例 3:

  • 输入:coins = [1], amount = 0
  • 输出:0

示例 4:

  • 输入:coins = [1], amount = 1
  • 输出:1

示例 5:

  • 输入:coins = [1], amount = 2
  • 输出:2

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 2^31 - 1
  • 0 <= amount <= 10^4

思路

动态规划:518.零钱兑换II中我们已经兑换一次零钱了,这次又要兑换,套路不一样!

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

  1. 确定递推公式

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

  1. dp数组如何初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

代码如下:

vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
  1. 确定遍历顺序

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。

所以本题并不强调集合是组合还是排列。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

在动态规划专题我们讲过了求组合数是动态规划:518.零钱兑换II ,求排列数是动态规划:377. 组合总和 Ⅳ

所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!

那么我采用coins放在外循环,target在内循环的方式。

本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序

综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。

  1. 举例推导dp数组

以输入:coins = [1, 2, 5], amount = 5为例
在这里插入图片描述
dp[amount]为最终结果。

C++代码

以上分析完毕,C++ 代码如下:

// 版本一
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过
                    dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
                }
            }
        }
        if (dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }
};

对于遍历方式遍历背包放在外循环,遍历物品放在内循环也是可以的,我就直接给出代码了

// 版本二
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {  // 遍历背包
            for (int j = 0; j < coins.size(); j++) { // 遍历物品
                if (i - coins[j] >= 0 && dp[i - coins[j]] != INT_MAX ) {
                    dp[i] = min(dp[i - coins[j]] + 1, dp[i]);
                }
            }
        }
        if (dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }
};

总结

这篇文章就把遍历顺序分析的清清楚楚。

动态规划:518.零钱兑换II 中求的是组合数动态规划:377. 组合总和 Ⅳ 中求的是排列数

而本题是要求最少硬币数量,硬币是组合数还是排列数都无所谓!所以两个for循环先后顺序怎样都可以!

相信大家看完之后,对背包问题中的遍历顺序有更深的理解了。

279.完全平方数

题目链接:279.完全平方数
参考:https://programmercarl.com/0279.%E5%AE%8C%E5%85%A8%E5%B9%B3%E6%96%B9%E6%95%B0.html

题目描述

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

  • 输入:n = 12
  • 输出:3
  • 解释:12 = 4 + 4 + 4

示例 2:

  • 输入:n = 13
  • 输出:2
  • 解释:13 = 4 + 9

提示:

  • 1 <= n <= 10^4

思路

可能刚看这种题感觉没啥思路,又平方和的,又最小数的。

我来把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

感受出来了没,这么浓厚的完全背包氛围,而且和昨天的题目动态规划:322. 零钱兑换 就是一样一样的!

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[j]:和为j的完全平方数的最少数量为dp[j]

  1. 确定递推公式

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

  1. dp数组如何初始化

dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?

看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。

非0下标的dp[j]应该是多少呢?

从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。

  1. 确定遍历顺序
    我们知道这是完全背包,

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

在动态规划:322. 零钱兑换中我们就深入探讨了这个问题,本题也是一样的,是求最小数!

所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!

我这里先给出外层遍历背包,内层遍历物品的代码:

vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
    for (int j = 1; j * j <= i; j++) { // 遍历物品
        dp[i] = min(dp[i - j * j] + 1, dp[i]);
    }
}
  1. 举例推导dp数组

已输入n为5例,dp状态图如下:
在这里插入图片描述
dp[0] = 0 dp[1] = min(dp[0] + 1) = 1 dp[2] = min(dp[1] + 1) = 2 dp[3] = min(dp[2] + 1) = 3 dp[4] = min(dp[3] + 1, dp[0] + 1) = 1 dp[5] = min(dp[4] + 1, dp[1] + 1) = 2

最后的dp[n]为最终结果。

C++代码

以上动规五部曲分析完毕C++代码如下:

// 版本一
class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i <= n; i++) { // 遍历背包
            for (int j = 1; j * j <= i; j++) { // 遍历物品
                dp[i] = min(dp[i - j * j] + 1, dp[i]);
            }
        }
        return dp[n];
    }
};

同样我在给出先遍历物品,在遍历背包的代码,一样的可以AC的。

// 版本二
class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 1; i * i <= n; i++) { // 遍历物品
            for (int j = i * i; j <= n; j++) { // 遍历背包
                dp[j] = min(dp[j - i * i] + 1, dp[j]);
            }
        }
        return dp[n];
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值