基于Spark的KMeans算法的并行化实现

聚类分析算法集中的KMeans以快速简单、对大数据集有较高的效率和可伸缩性、时间复杂度近于线性、适合挖掘大规模数据集等优点而被广泛应用,但该算法也有其特定的性能瓶颈。

  1. KMeans算法初始化过程中预先设定的K值很难估计,大多数全凭经验决定,具有主观性
  2. 算法开始前随机选定的初始类簇中心也会在很大程度上影响聚类的结果

传统的数据挖掘模型及其优化算法大多在单机上进行串行运算,当面对如此复杂多样的大规模数据集和多维数据类型时,由于单机的计算资源有限而造成挖掘算法不能快速准确地完成数据挖掘任务

hadoop适合处理离线批处理文件,对于迭代运算和实时处理表现很差。

KMeans算法简单高效,适合数据量大、特征维度搞的数据集,而且它对数据的依赖度较低

采用支持向量机、遗传算法来确定最佳K值

Spark提出的RDD(Resilient Distributed Datasets)是一种弹性分布式数据集,应用程序可以将中间计算结果暂存到内存中,方便下一次迭代计算,节省不必要的IO,还可以实现数据集的重用,进而可以优化迭代计算的负载。

RDD的核心思想:它将数据集缓存在内存中,并用Lineage机制来进行容错
功能特性:具有智能容错机制、位置感知调度和可伸缩性
Spark会把迭代计算所需要的初始数据定义为RDD并以分区的形式加载到集群中所有计算节点的内存分区中,接着由计算节点里的人物集对本地内存执行迭代计算。当计算节点的内存远远大于待处理的数据集时,迭代计算过程中应用程序基本无需和磁盘数据进行数据IO

分布式计算环境下KMeans算法并行化研究

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
K-Means算法是一种基于距离度量的聚类算法,它的目标是将数据集划分为预定的K个簇,使得簇内的数据点相似度高,簇间的相似度低。K-Means算法的优点是简单易实现、速度快,但它需要预先指定簇的个数K,且会受到初始质心的影响而容易陷入局部最优解。 在Spark中,K-Means算法实现基于RDD和MLlib库。这里简单介绍一下SparkK-Means算法实现流程: 1.读取数据并预处理:Spark中可以通过读取数据源(如HDFS、本地文件系统、Kafka等)来加载数据,然后对数据进行预处理(如去除缺失值、标准等)。 2.初始质心:K-Means算法需要预先指定簇的个数K,然后随机选取K个数据点作为初始质心。在Spark中,可以使用sample()函数来随机抽样,然后使用takeSample()函数来选择K个样本作为初始质心。 3.计算距离和归类:对于每个数据点,计算其与每个质心之间的距离,并将其归类到距离最近的质心所在的簇中。在Spark中,可以使用map()函数和reduceByKey()函数来实现这一步。 4.重新计算质心:对于每个簇,重新计算该簇的质心,即将该簇内所有数据点的坐标求平均值。在Spark中,可以使用groupByKey()函数和mapValues()函数来实现这一步。 5.判断收敛:判断当前质心与上一轮质心的距离是否小于某个阈值,如果小于则认为算法已经收敛,否则继续迭代。在Spark中,可以使用zip()函数和map()函数来计算两个向量之间的距离,并使用reduce()函数来计算平方和。 6.输出结果:将最终的簇划分结果输出到数据源中。在Spark中,可以使用saveAsTextFile()函数将结果保存到HDFS或本地文件系统中。 以上就是SparkK-Means算法实现流程。在实际应用中,为了提高算法的效率和精度,可以采用一些优措施,如使用k-means++算法来选择初始质心、使用PCA算法来降维等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值