Dify最牛的地方就是像搭积木一样简单——不用懂代码,普通人稍微学学就能用它的「智能机器人」和「流程图」功能,自己拼出一套自动化工具。比如自动回复客户、处理文件这些事,你拖拖拽拽就能搭出想要的功能,特别适合折腾些好玩的小发明。
我们可以通过智能体或工作流,自定义工具完成很多我们好玩的功能。
报文篇幅较长,简单说下内容:
- 从0开始创建一个票务识别智能体;
- 介绍搭建过程中的各个细节;
- 教会你每一步为什么,而不是只是完成;
通过实践这个流程,我相信你可以学会自己搭建自己需要的智能体。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
一、Dify 工作流:
工作流通过将复杂的任务分解成较小的步骤(节点)降低系统复杂度,减少了对提示词技术和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,提升了系统的可解释性、稳定性和容错性。
Dify 工作流分为两种类型:
- Chatflow:面向对话类情景,包括客户服务、语义搜索、以及其他需要在构建响应时进行多步逻辑的对话式应用程序。
- Workflow:面向自动化和批处理情景,适合高质量翻译、数据分析、内容生成、电子邮件自动化等应用程序。
二、如何开始呢?
- 从一个空白的工作流开始构建或者使用系统模版帮助你开始;
- 熟悉基础操作,包括在画布上创建节点、连接和配置节点、调试工作流、查看运行历史等;
- 保存并发布一个工作流;
- 在已发布应用中运行或者通过 API 调用工作流;
根据这四步,我们一步一步来实现。
三、创建火车票单类票据识别智能体工作流:
3.1 创建工作里空白应用:
在首页,选择 工作室-> 工作流-> 创建空白应用
按照下图所示 1-> 2 -> 3 ,操作
工作流创建成功:
3.2 添加节点:
点击 + 号,添加节点。
选择自己需要的节点:我们这里选择 LLM
3.3 选择LLM 节点后如下:
3.4 修改配置LLM
-
选择模型,这里选择的模型需要支持:
多模态输入
的大模型。因为要使用视觉。我这里使用的是通过ollama 部署的 llava 本地模型。 -
输入角色提示词,在
SYSTEM
中填入:根据图片识别内容,给出json格式的结构化信息,包括:起始站,终点站,车次,乘车日期,出发时间,票面价格,身份证号,姓名。
因为我们的任务非常简单,因此无需复杂的提示词,只要把你的要求清晰表达出来即可。
3.5 一个火车票识别智能体就搭建完了。点击发布。
3.6 开启图片上传功能:
3.7 火车票识别智能体运行:
3.8 点击运行,上传火车票:
图片支持:本地和网络地址
3.9 点击开始运行,分析结果:
可以看出结果是比较糟糕的,识别的信息错误很大。主要是模型不星。
3.10 更换大模型:
使用:Qwen/Qwen2-VL-72B-Instruct
3.11 重新识别,非常完美的结果:
四、创建多类票据识别智能体工作流:
多票据,可以知道,需要先判断是什么票?
遇事不决,交给大模型。
4.1 只需加一个发票类型识别
的LLM:
发票和火车票,提示词如下:
你是发票识别专家,根据用户上传的发票图像,给出发票类型。只需返回指定的发票类型对应的序号,无需其他任何内容。
发票类型包括:
1.火车票
2.增值税电子发票
如果无法判断,直接输出0。
如果是火车票,输出 1. 如果是增值税电子发票,输出2.
4.2 添加条件分支:
这个分支的意义是,如果是火车票,走哪个模型;如果是发票,走哪个模型:
4.3 需要新增一个 LLM发票识别.
提示词:
根据图片识别内容,给出json格式的结构化信息,包括:发票标题,发票号码,开票日期,购买方信息名称,购买方统一社会信用代码/纳税人识别号,销售方信息名,销售方统一社会信用代码/纳税人识别号,项目名称,规格型号,单位,数量,单价,金额,价税合计(小写),备注。
其实就是,把发票上的信息。描述了一下。
4.4 添加变量聚合器
把不同识别大模型
的输出,都统一路由到一个叫变量聚合器
的组件中:
这样的话,就不用给每一个识别模型,都设置结束节点。
4.5 配置结束节点:
4.6 完整工作流展示:
4.7 验证:运行识别火车票,完美实现功能:
从追踪结果看:完全符合我们的判断;
如果识别是火车票,输出 1. 条件判断走: 火车票识别大模型,通过变量聚合器后,输出。
4.8 验证:运行发票识别,完美:
4.9 导出保存DSL:
4.10 导入入口:
如果想要使用别人的工作流,这里直接导入即可。
五、备注一下,文中使用的模型都是用的硅基的,获取流程如下:
注册即送 2000 万 Tokens
5.1 注册地址:
https://cloud.siliconflow.cn/i/5WC4oDo4
5.2 如何获取 SiliconCloud api-key?
点击注册地址: https://cloud.siliconflow.cn/i/5WC4oDo4。注册后登陆进入以下页面,创建api-key。
配置后,在聊天助手中就可以使用,可以看到硅基的模型:
最先掌握AI的人,将会比较晚掌握AI的人有竞争优势
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
倘若大家对大模型抱有兴趣,那么这套大模型学习资料肯定会对你大有助益。
针对0基础小白:
如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
。