问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。
输入格式
输入包含两个正整数,K和L。
输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;
对于50%的数据,K <= 16, L <= 10;
对于100%的数据,1 <= K,L <= 100。
解题思路:
dp问题,dp[i][j]的意思为,i为几位数,j为首位数字,值为情况有多少种,因为要保证相邻两位不能为相邻数字,所以第i行的值为第i-1行,排除j-1和j+1列。
求l位的,就是需要打出1—L行的情况,每行的数据都是基于上一行数据得出的。
加法取模运算需要注意!!!
代码如下:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mod 1000000007
int dp[105][105];
int main()
{
int k,l,i,j,x;
scanf("%d%d",&k,&l); //输入k进制,L位数
for(i = 0; i<k; i++) //初始是第一行各列都为1,不存在需要排除的情况
dp[1][i] = 1;
for(i = 2; i<=l; i++) //行循环
for(j = 0; j<k; j++) //列循环
for(x = 0; x<k; x++) //用来排除相邻的数
if(x!=j-1&&x!=j+1)
{
dp[i][j]+=dp[i-1][x];
dp[i][j]%=mod;
}
int sum = 0;
for(i = 1; i<k; i++) //统计
{
sum+=dp[l][i];
sum%=mod;
}
printf("%d\n",sum%mod);
return 0;
}
本文探讨了如何求解特定条件下K进制数中的K好数数量,通过动态规划算法解决这一数学问题,并提供了一个C++实现代码示例。
1102

被折叠的 条评论
为什么被折叠?



