蓝桥杯 算法训练 K好数

本文探讨了如何求解特定条件下K进制数中的K好数数量,通过动态规划算法解决这一数学问题,并提供了一个C++实现代码示例。

问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。

输入格式
输入包含两个正整数,K和L。

输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;

对于50%的数据,K <= 16, L <= 10;

对于100%的数据,1 <= K,L <= 100。

解题思路:
dp问题,dp[i][j]的意思为,i为几位数,j为首位数字,值为情况有多少种,因为要保证相邻两位不能为相邻数字,所以第i行的值为第i-1行,排除j-1和j+1列。
求l位的,就是需要打出1—L行的情况,每行的数据都是基于上一行数据得出的。
加法取模运算需要注意!!!

代码如下:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mod 1000000007   
int dp[105][105];

int main()
{
    int k,l,i,j,x;
    scanf("%d%d",&k,&l);  //输入k进制,L位数
    for(i = 0; i<k; i++)   //初始是第一行各列都为1,不存在需要排除的情况
        dp[1][i] = 1;
    for(i = 2; i<=l; i++)  //行循环
        for(j = 0; j<k; j++)  //列循环
            for(x = 0; x<k; x++)  //用来排除相邻的数
                if(x!=j-1&&x!=j+1)
                {
                    dp[i][j]+=dp[i-1][x];
                    dp[i][j]%=mod;
                }
    int sum = 0;
    for(i = 1; i<k; i++)  //统计
    {
        sum+=dp[l][i];
        sum%=mod;
    }
    printf("%d\n",sum%mod);

    return 0;
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值