Leetcode刷题 2021.01.11
Leetcode1202 交换字符串中的元素
给你一个字符串 s,以及该字符串中的一些「索引对」数组 pairs,其中 pairs[i] = [a, b] 表示字符串中的两个索引(编号从 0 开始)。
你可以 任意多次交换 在 pairs 中任意一对索引处的字符。
返回在经过若干次交换后,s 可以变成的按字典序最小的字符串。
今天的每日一题,好像这几天很喜欢考并查集。思路还是比较好想,因为可以无限交换,所以如果是连通的就归为一类,按字典序排序就行了。其实个人感觉并查集就是聚类,最后查看有几类,类中有哪些元素就行了。
class Solution {
public String smallestStringWithSwaps(String s, List<List<Integer>> pairs) {
int n = s.length();
//并查集
UninonFind uf = new UninonFind(n);
//合并
for(List<Integer> list : pairs){
uf.union(list.get(0), list.get(1));
}
//再压缩一次,确保类中每个元素都指向root
for(int i = 0; i < n; i++){
uf.find(i);
}
//用一个map来记录类的root,优先队列进行排序
Map<Integer, PriorityQueue<Character>> map = new HashMap<>();
char[] arr = s.toCharArray();
for(int i = 0; i < n; i++){
int root = uf.parent[i];
if (map.containsKey(root)){
map.get(root).offer(arr[i]);
}else{
PriorityQueue<Character> queue = new PriorityQueue<>();
queue.offer(arr[i]);
map.put(root, queue);
}
}
//从map里面poll()出来即可
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++){
int root = uf.parent[i];
sb.append(map.get(root).poll());
}
return sb.toString();
}
class UninonFind{
int[] parent;
public UninonFind(int n){
parent = new int[n];
for(int i = 0; i < n; i++){
parent[i] = i;
}
}
private int find(int i){
if (parent[i] == i){
return parent[i];
}
return parent[i] = find(parent[i]);
}
private void union(int i, int j){
int root1 = find(i);
int root2 = find(j);
if (root1 == root2) return;
parent[root1] = root2;
}
}
}
Leetcode1277 统计全为 1 的正方形子矩阵
给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。
好像和之前做的一道也是正方形的题很类似。一开始用O(n^3)的方法做出来的,结果一看只打败5%,看了题解,收获不少,改进到O(n2)(这个n平方打不出来不知道什么情况)。其实解法和之前那道题一样,对于一个右下角的正方形考虑上左三个元素的情况。
class Solution {
public int countSquares(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
int[][] dp = new int[m][n];
int res = 0;
//边界初始化
for(int i = 0; i < m; i++){
dp[i][0] = matrix[i][0];
if (dp[i][0] == 1) res++;
}
for(int i = 0; i < n; i++){
dp[0][i] = matrix[0][i];
if (dp[0][i] == 1) res++;
}
//多加了一次,减一个
if (matrix[0][0] == 1) res--;
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
//状态转移方程,对于一个来说和周围三个有关,并且一个大小为3的正方形一定包含一个大小为2和一个大小为1的正方形
if (matrix[i][j] == 1){
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
res += dp[i][j];
}
}
}
return res;
}
}
Leetcode1314 矩阵区域和
给你一个 m * n 的矩阵 mat 和一个整数 K ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和:
i - K <= r <= i + K, j - K <= c <= j + K
(r, c) 在矩阵内。
对于这种二维要求区域范围值得问题,一般都是前缀和。之前做过一道差不多的,二维数组检索与求和吧好像是。这题也是差不多的思路,最后计算值得时候要考虑好多边界条件,不想想了,直接拿官方题解的代码抄一抄了。-_-||
class Solution {
public int[][] matrixBlockSum(int[][] mat, int K) {
int m = mat.length, n = mat[0].length;
//多申请一行一列,可以避免考虑边界复杂的情况
int[][] help = new int[m + 1][n + 1];
for(int i = 1; i < m + 1; i++){
for(int j = 1; j < n + 1; j++){
help[i][j] = help[i - 1][j] + help[i][j - 1] - help[i - 1][j - 1] + mat[i - 1][j - 1];
}
}
int[][] res = new int[m][n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
res[i][j] = get(help, m, n, i + K + 1, j + K + 1) - get(help, m, n, i - K, j + K + 1) - get(help, m, n, i + K + 1, j - K) + get(help, m, n, i - K, j - K);
}
}
return res;
}
private int get(int[][] help ,int m, int n, int x, int y){
x = Math.max(Math.min(x, m), 0);
y = Math.max(Math.min(y, n), 0);
return help[x][y];
}
}