自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 AttributeError: module ‘tensorflow.python.keras.backend’ has no attribute ‘get_graph’解决方法

AttributeError: module ‘tensorflow.python.keras.backend’ has no attribute ‘get_graph’解决方法问题如下:AttributeError: module ‘tensorflow.python.keras.backend’ has no attribute ‘get_graph’win+R打开命令行查询tenso...

2019-11-12 10:50:06 2744

转载 CP分解和Tucker分解的区别

CP分解图示:Tucker分解图示:两者的区别如下:1.主要区别:核张量(core tensor)Tucker分解的结果会形成一个核张量,即PCA中的主成分因子,来表示原张量的主要性质,而CP分解没有核张量。2.Tensor分解是n-秩与低秩近似,而CP分解是秩与低秩近似在CP分解时我们都是先固定秩的个数,再去迭代,即没有用到张量本身的秩;但是在Tucker分解时我们是根据张量本身...

2018-10-23 15:32:51 5771

转载 PCA——主成分分析法

降维是对数据高维度特征的一种预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为了应用非常广泛的数据预处理方法。降维具有如下一些优点:(1)使得数据集更易使用(2)降低算法的计算开销(3)去除噪声(4)使得结果容易理解PCA(princ...

2018-10-23 14:00:34 383 1

转载 量子中的各种“态”

纠缠态VS叠加态纠缠态是叠加态的一种特殊的情形,它是由两个或两个以上的粒子构成的一个态,其特征是不能分解成两个态的乘积。单粒子没有纠缠态,但可以有叠加态,这就是纠缠态与叠加态最大的区别。一般来说,纠缠态是与可分离态相对的,如果一个多粒子态可以写成部分粒子态的乘积形式,则这个态为可分离态,否则即为纠缠态(一般书上对纠缠态的定义)。叠加态是与表象的基矢相联系的,如果基矢是完备的,那么态便可以写成这组...

2018-10-21 10:33:13 5225

原创 Kernel methods

核方法(Kernel methods)核方法可以将数据集从低维映射到高维,使得线性不可分的情况变得线性可分。然而,映射后的目标空间维数太大,无法进行空间中的向量内积运算。因此我们定义了核函数,它可以代替求解高维空间中向量内积的运算。在如下的原空间中,可以用一个椭圆曲线将数据区分开:但当我们引入一个映射函数以后,新的三维空间内数据就线性可分了。定义一个Kernel Function来代...

2018-10-18 22:01:50 660

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除