java
Ximo丶
这个作者很懒,什么都没留下…
展开
-
Fibonacci数列
描述 Fibonacci数列是这样定义的: F[0] = 0 F[1] = 1 for each i ≥ 2: F[i] = F[i-1] + F[i-2] 因此,Fibonacci数列就形如:0, 1, 1, 2, 3, 5, 8, 13, …,在Fibonacci数列中的数我们称为Fibonacci数。给你一个N,你想让其变为一个Fibonacci数,每一步你可以把当前数字X变为X-1或者X+1,现在给你一个数N求最少需要多少步可以变为Fibonacci数。 输入描述: 输入为一个正整数N(1 ≤ N原创 2021-06-18 09:21:40 · 111 阅读 · 0 评论 -
【剑指offer】把字符串转换成整数
题目:将一个字符串转换成一个整数,要求不能使用字符串转换整数的库函数。 数值为0或者字符串不是一个合法的数值则返回0 输入描述:输入一个字符串,包括数字字母符号,可以为空 返回值描述:如果是合法的数值表达则返回该数字,否则返回0 解题思路:将每一位得到的值, 乘以10,再加上下一位值,循环即可。 难点:注意边界值。 代码: public class Solution { public int StrToInt(String str) { char[] chs = str.toChar原创 2021-06-17 17:54:13 · 101 阅读 · 0 评论 -
二货小易有一个W*H的网格盒子,网格的行编号为0~H-1,网格的列编号为0~W-1。每个格子至多可以放一块蛋糕,任意两块蛋糕的欧几里得距离不能等于2。
题目:二货小易有一个W*H的网格盒子,网格的行编号为0 ~ H-1,网格的列编号为0 ~ W-1。每个格子至多可以放一块蛋糕,任意两块蛋糕的欧几里得距离不能等于2。 对于两个格子坐标(x1,y1),(x2,y2)的欧几里得距离为: ( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) ) 的算术平方根 小易想知道最多可以放多少块蛋糕在网格盒子里。 解析:本题目主要难度在于读懂题目。 剖析一下题干:需要找到可以放蛋糕的格子的个数;反向思考,创建一个二维数组,只需要找到不能放蛋糕的格子原创 2021-06-16 11:22:40 · 390 阅读 · 0 评论 -
给定一个十进制数M,以及需要转换的进制数N。将十进制数M转化为N进制数
解题思路:将得到的十进制值 对 进制数 取模,余数值即为当前低进制的位的值。此时将十进制数除以进制数,重复模操作,直到十进制数为0,便得到接下来位的值。 举例:10 转化为 2进制; 先模:10 % 2 = 0 ——> 最低为为0;在除: 10 / 2 = 5; 重复:5 % 2 = 1 ——> 第二位为1;5 / 2 = 2; 重复:2 % 2 = 0 ——> 第三位为0;2 / 2 = 1; 重复:1 % 2 = 1 ——> 第四位为1;1 / 2 = 0; import ja原创 2021-06-15 21:56:29 · 433 阅读 · 0 评论