给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
二叉搜索树的特点
首先判断 p 和 q 是否相等,
若相等,则直接返回 p 或 q 中的任意一个,程序结束
若不相等,则判断 p 和 q 在向左还是向右的问题上,是否达成了一致
如果 p 和 q 都小于root, 一致认为向左,则 root = root.left
如果 p 和 q 都大于root, 一致认为向右,则 root = root.right
如果 p 和 q 哥俩对下一步的路线出现了分歧,说明 p 和 q 在当前的节点上就要分道扬镳了,当前的 root 是临别前一起走的最后一站
返回当前 root
程序结束
(非递归,采用遍历的形式)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if not root:
return None
if p.val == q.val:
return p
while root:
if q.val < root.val and p.val < root.val:
root = root.left
if q.val > root.val and p.val > root.val:
root = root.right
else:
return root
来源:力扣(LeetCode)