概述
Hive产生背景
Hive是基于Hadoop的一个数据仓库工具,可以将 结构化的数据文件 映射为一张表(类似于RDBMS中的表),并提供类SQL查询功能;Hive是由Facebook开源,用于解决海量结构化日志的数据统计。
- Hive本质是:将 SQL 转换为 MapReduce 的任务进行运算
- 底层由HDFS来提供数据存储
- 可以将Hive理解为一个:将 SQL 转换为 MapReduce 任务的工具
Hive和RDBMS对比
由于 Hive 采用了类似SQL 的查询语言 HQL(Hive Query Language),因此很容易将Hive 理解为数据库。其实从结构上来看,Hive 和传统的关系数据库除了拥有类似的查询语言,再无类似之处。
查询语言相似。HQL <=> SQL 高度相似
由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。
数据规模。Hive存储海量数据;RDBMS只能处理有限的数据集;
由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;而RDBMS可以支持的数据规模较小。
执行引擎。Hive的引擎是MR/Tez/Spark/Flink;RDBMS使用自己的执行引擎
Hive中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的。而RDBMS通常有自己的执行引擎。
数据存储。Hive保存在HDFS上;RDBMS保存在本地文件系统 或 裸设备
Hive 的数据都是存储在 HDFS 中的。而RDBMS是将数据保存在本地文件系统或裸设备中。
执行速度。Hive相对慢(MR/数据量);RDBMS相对快;
Hive存储的数据量大,在查询数据的时候,通常没有索引,需要扫描整个表;加之Hive使用MapReduce作为执行引擎,这些因素都会导致较高的延迟。而RDBMS对数据的访问通常是基于索引的,执行延迟较低。当然这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出并行的优势。
可扩展性。Hive支持水平扩展;通常RDBMS支持垂直扩展,对水平扩展不友好
Hive建立在Hadoop之上,其可扩展性与Hadoop的可扩展性是一致的(Hadoop集群规模可以轻松超过1000个节点)。而RDBMS由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有100台左右。
数据更新。Hive对数据更新不友好;RDBMS支持频繁、快速数据更新
Hive是针对数据仓库应用设计的,数据仓库的内容是读多写少的。因此,Hive中不建议对数据的改写,所有的数据都是在加载的时候确定好的。而RDBMS中的数据需要频繁、快速的进行更新。
hive架构
- 用户接口:CLI(Common Line Interface):Hive的命令行,用于接收HQL,并返回结果; JDBC/ODBC:是指Hive的java实现,与传统数据库JDBC类似;WebUI:是指可通过浏览器访问Hive;
- Thrift Server:Hive可选组件,是一个软件框架服务,允许客户端使用包括Java、C++、Ruby和其他很多种语言,通过 编程的方式远程访问Hive;
- 元数据管理(MetaStore) Hive将元数据存储在关系数据库中(如mysql、derby)。Hive的元数据包括:数据库名、表名及类型、字段名称及数据类型、数据所在位置等;
- 驱动程序(Driver)
- 解析器 (SQLParser) :使用第三方工具(antlr)将HQL字符串转换成抽象语法树(AST);对AST进行语法分析,比如字段是否存在、SQL语义是否有误、表是否存在;
- 编译器 (Compiler) :将抽象语法树编译生成逻辑执行计划;
- 优化器 (Optimizer) :对逻辑执行计划进行优化,减少不必要的列、使用分区等;
- 执行器 (Executr) :把逻辑执行计划转换成可以运行的物理计划;
hive配置文件
默认配置文件:hive-default.xml
自定义配置文件: $HIVE_HOME/conf/hive-site.xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- hive元数据的存储位置 -->
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://linux123:3306/hivemetadata?createDatabaseIfNotExist=true&useSSL=false</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>
<!-- 指定驱动程序 -->
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<!-- 连接数据库的用户名 -->
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>hive</value>
<description>username to use against metastore database</description>
</property>
<!-- 连接数据库的口令 -->
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>12345678</value>
<description>password to use against metastore database</description>
</property>
<property>
<!-- 数据默认的存储位置(HDFS) -->
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive/warehouse</value>
<description>location of default database for the warehouse</description>
</property>
<property>
<!-- 在命令行中,显示当前操作的数据库 -->
<name>hive.cli.print.current.db</name>
<value>true</value>
<description>Whether to include the current database in the Hive prompt.</description>
</property>
<property>
<!-- 在命令行中,显示数据的表头 -->
<name>hive.cli.print.header</name>
<value>true</value>
</property>
<property>
<!-- 操作小规模数据时,使用本地模式,提高效率 -->
<name>hive.exec.mode.local.auto</name>
<value>true</value>
<description>Let Hive determine whether to run in local mode automatically</description>
</property>
</configuration>
初始化元数据库:schematool -dbType mysql -initSchema
Hive的日志文件:Hive的log默认存放在 /tmp/root 目录下(root为当前用户名);这个位置可以修改。
hive命令
- -e:不进入hive交互窗口,执行sql语句
-f:执行脚本中sql语句hive -e "select * from users"
# 创建文件hqlfile1.sql,内容:select * from users # 执行文件中的SQL语句 hive -f hqlfile1.sql # 执行文件中的SQL语句,将结果写入文件 hive -f hqlfile1.sql >> result1.log
- 退出Hive命令行
exit; quit; - 在命令行执行 shell 命令 / dfs 命令
hive> ! ls; hive> ! clear; hive> dfs -ls / ;
数据类型与文件格式
基本数据类型及转换
大类 | 类型 |
---|---|
Integers(整型) | TINYINT – 1字节的有符号整数 SMALLINT – 2字节的有符号整数 INT – 4字节的有符号整数 BIGINT – 8字节的有符号整数 |
Floating pointnumbers(浮点数) | FLOAT – 单精度浮点数 DOUBLE – 双精度浮点数 |
Fixed pointnumbers(定点数) | DECIMAL – 17字节,任意精度数字。通常用户自定义decimal(12, 6) |
String(字符串) | STRING – 可指定字符集的不定长字符串 VARCHAR – 1-65535长度的不定长字符串 CHAR – 1-255定长字符串 |
Datetime(时间日期类型) | TIMESTAMP – 时间戳(纳秒精度) DATE – 时间日期类型 |
Boolean(布尔类型) | BOOLEAN – TRUE / FALSE |
Binary types(二进制类型) | BINARY – 字节序列 |
显示类型转换
select cast('1111' as int);
集合数据类型
Hive支持集合数据类型,包括array、map、struct、union
类型 | 描述 | 字面量示例 |
---|---|---|
ARRAY | 有序的相同数据类型的集合 | array(1,2) |
MAP | key-value对。key必须是基本数据类型,value不限 | map(‘a’, 1, ‘b’,2) |
STRUCT | 不同类型字段的集合。类似于C语言的结构体 | struct(‘1’,1,1.0),named_struct(‘col1’, ‘1’, ‘col2’, 1,‘clo3’, 1.0) |
UNION | 不同类型的元素存储在同一字段的不同行中 | create_union(1, ‘a’, 63) |
hive> select array(1,2,3);
OK
[1,2,3]
-- 使用 [] 访问数组元素
hive> select arr[0] from (select array(1,2,3) arr) tmp;
hive> select map('a', 1, 'b', 2, 'c', 3);
OK
{"a":1,"b":2,"c":3}
-- 使用 [] 访问map元素
hive> select mymap["a"] from (select map('a', 1, 'b', 2, 'c',3) as mymap) tmp;
-- 使用 [] 访问map元素。 key 不存在返回 NULL
hive> select mymap["x"] from (select map('a', 1, 'b', 2, 'c',3) as mymap) tmp;
NULL
hive> select struct('username1', 7, 1288.68);
OK
{"col1":"username1","col2":7,"col3":1288.68}
-- 给 struct 中的字段命名
hive> select named_struct("name", "username1", "id", 7,"salary", 12880.68);
OK
{"name":"username1","id":7,"salary":12880.68}
-- 使用 列名.字段名 访问具体信息
hive> select userinfo.id from (select named_struct("name", "username1", "id",7, "salary", 12880.68) userinfo) tmp;
-- union 数据类型
hive> select create_union(0, "zhansan", 19, 8000.88) uinfo;
文本文件数据编码
Hive表中的数据在存储在文件系统上,Hive定义了默认的存储格式,也支持用户自定义文件存储格式。
Hive默认分隔符
id name age hobby(array) score(map)
字段之间:^A
元素之间: ^B
key-value之间:^C
666^Alisi^A18^Aread^Bgame^Ajava^C97^Bhadoop^C87
读时模式
在传统数据库中,在加载时发现数据不符合表的定义,则拒绝加载数据。数据在写入数据库时对照表模式进行检查,这种模式称为"写时模式"(schema on write)。
写时模式 -> 写数据检查 -> RDBMS;
Hive中数据加载过程采用"读时模式" (schema on read),加载数据时不进行数据格式的校验,读取数据时如果不合法则显示NULL。这种模式的优点是加载数据迅速。
读时模式 -> 读时检查数据 -> Hive;好处:加载数据快;问题:数据显示NULL
HQL操作之 – DDL命令
参考: https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL
DDL(data definition language): 主要的命令有CREATE、ALTER、DROP等。
DDL主要是用在定义、修改数据库对象的结构 或 数据类型。
数据库操作
创建数据库语法
CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name
[COMMENT database_comment]
[LOCATION hdfs_path]
[MANAGEDLOCATION hdfs_path]
[WITH DBPROPERTIES (property_name=property_value, ...)];
-- 创建数据库,在HDFS上存储路径为 /user/hive/warehouse/*.db
hive (default)> create database mydb;
hive (default)> dfs -ls /user/hive/warehouse;
-- 避免数据库已经存在时报错,使用 if not exists 进行判断【标准写法】
hive (default)> create database if not exists mydb;
-- 创建数据库。添加备注,指定数据库在存放位置
hive (default)> create database if not exists mydb2
comment 'this is mydb2'
location '/user/hive/mydb2.db';
查看数据库
-- 查看所有数据库
show database;
-- 查看数据库信息
desc database mydb2;
desc database extended mydb2;
describe database extended mydb2;
使用数据库
use mydb;
删除数据库
-- 删除一个空数据库
drop database databasename;
-- 如果数据库不为空,使用 cascade 强制删除
drop database databasename cascade;
建表语法
create [external] table [IF NOT EXISTS] table_name
[(colName colType [comment 'comment'], ...)]
[comment table_comment]
[partition by (colName colType [comment col_comment], ...)]
[clustered BY (colName, colName, ...)
[sorted by (col_name [ASC|DESC], ...)] into num_buckets
buckets]
[row format row_format]
[stored as file_format]
[LOCATION hdfs_path]
[TBLPROPERTIES (property_name=property_value, ...)]
[AS select_statement];
CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS]
[db_name.]table_name
LIKE existing_table_or_view_name
[LOCATION hdfs_path];
- CREATE TABLE。按给定名称创建表,如果表已经存在则抛出异常。可使用if notexists 规避。
- EXTERNAL关键字。创建外部表,否则创建的是内部表(管理表)。
删除内部表时,数据和表的定义同时被删除;
删除外部表时,仅仅删除了表的定义,数据保留;
在生产环境中,多使用外部表; - comment。表的注释
- partition by。对表中数据进行分区,指定表的分区字段
- clustered by。创建分桶表,指定分桶字段
- sorted by。对桶中的一个或多个列排序,较少使用
- 存储子句
- stored as SEQUENCEFILE|TEXTFILE|RCFILE。如果文件数据是纯文本,可以使用 STORED AS TEXTFILE(缺省);如果数据需要压缩,使用 STORED AS SEQUENCEFILE(二进制序列文件)
- LOCATION。表在HDFS上的存放位置
- TBLPROPERTIES。定义表的属性
- AS。后面可以接查询语句,表示根据后面的查询结果创建表
- LIKE。like 表名,允许用户复制现有的表结构,但是不复制数据
内部表
创建表SQL
-- 创建内部表
create table t1(
id int,
name string,
hobby array<string>,
addr map<string, string>
)
row format delimited
fields terminated by ";"
collection items terminated by ","
map keys terminated by ":";
-- 显示表的定义,显示的信息较少
desc t1;
-- 显示表的定义,显示的信息多,格式友好
desc formatted t1;
-- 加载数据
load data local inpath '/home/hadoop/data/t1.dat' into table t1;
-- 查询数据
select * from t1;
-- 查询数据文件
dfs -ls /user/hive/warehouse/mydb.db/t1;
-- 删除表。表和数据同时被删除
drop table t1;
外部表
-- 创建外部表
create external table t2(
id int,
name string,
hobby array<string>,
addr map<string, string>
)
row format delimited
fields terminated by ";"
collection items terminated by ","
map keys terminated by ":";
-- 显示表的定义
desc formatted t2;
-- 加载数据
load data local inpath '/home/hadoop/data/t1.dat' into table t2;
-- 查询数据
select * from t2;
-- 删除表。表删除了,目录仍然存在
drop table t2;
内部表与外部表的转换
-- 创建内部表,加载数据,并检查数据文件和表的定义
create table t1(
id int,
name string,
hobby array<string>,
addr map<string, string>
)
row format delimited
fields terminated by ";"
collection items terminated by ","
map keys terminated by ":";
load data local inpath '/home/hadoop/data/t1.dat' into table t1;
dfs -ls /user/hive/warehouse/mydb.db/t1;
desc formatted t1;
-- 内部表转外部表
alter table t1 set tblproperties('EXTERNAL'='TRUE');
-- 查询表信息,是否转换成功
desc formatted t1;
-- 外部表转内部表。EXTERNAL 大写,false 不区分大小
alter table t1 set tblproperties('EXTERNAL'='FALSE');
-- 查询表信息,是否转换成功
desc formatted t1;
分区表
Hive在执行查询时,一般会扫描整个表的数据。由于表的数据量大,全表扫描消耗时间长、效率低。
而有时候,查询只需要扫描表中的一部分数据即可,Hive引入了分区表的概念,将表的数据存储在不同的子目录中,每一个子目录对应一个分区。只查询部分分区数据时,可避免全表扫描,提高查询效率。
分区表创建与数据加载
-- 创建表
create table if not exists t3(
id int
,name string
,hobby array<string>
,addr map<String,string>
)
partitioned by (dt string)
row format delimited
fields terminated by ';'
collection items terminated by ','
map keys terminated by ':';
-- 加载数据。
load data local inpath "/home/hadoop/data/t1.dat" into table t3 partition(dt="2020-06-01");
**查看分区**
show partitions t3;
新增分区并设置数据
-- 增加一个分区,不加载数据
alter table t3 add partition(dt='2020-06-03');
-- 增加多个分区,不加载数据
alter table t3 add partition(dt='2020-06-05') partition(dt='2020-06-06');
-- 增加多个分区。准备数据
hdfs dfs -cp /user/hive/warehouse/mydb.db/t3/dt=2020-06-01 /user/hive/warehouse/mydb.db/t3/dt=2020-06-07
hdfs dfs -cp /user/hive/warehouse/mydb.db/t3/dt=2020-06-01 /user/hive/warehouse/mydb.db/t3/dt=2020-06-08
-- 增加多个分区。加载数据
alter table t3 add
partition(dt='2020-06-07') location '/user/hive/warehouse/mydb.db/t3/dt=2020-06-07'
partition(dt='2020-06-08') location '/user/hive/warehouse/mydb.db/t3/dt=2020-06-08';
修改分区的hdfs路径
alter table t3 partition(dt='2020-06-01') set location '/user/hive/warehouse/t3/dt=2020-06-03';
删除分区
-- 可以删除一个或多个分区,用逗号隔开
alter table t3 drop partition(dt='2020-06-03'),partition(dt='2020-06-04');
修改表&删除表
-- 修改表名。rename
alter table course_common rename to course_common1;
-- 修改列名。change column
alter table course_common1 change column id cid int;
-- 修改字段类型。change column
alter table course_common1 change column cid cid string;
-- 增加字段。add columns
alter table course_common1 add columns (common string);
-- 删除字段:replace columns
-- 这里仅仅只是在元数据中删除了字段,并没有改动hdfs上的数据文件
alter table course_common1 replace columns(id string, cname string, score int);
-- 删除表
drop table course_common1;
HQL操作之–数据操作
数据导入
装载数据
LOAD DATA [LOCAL] INPATH 'filepath'
[OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1,partcol2=val2 ...)]
- LOCAL:
- LOAD DATA LOCAL … 从本地文件系统加载数据到Hive表中。本地文件会拷贝到Hive表指定的位置
- LOAD DATA … 从HDFS加载数据到Hive表中。HDFS文件移动到Hive表指定的位置
- INPATH:加载数据的路径
- OVERWRITE:覆盖表中已有数据;否则表示追加数据
- PARTITION:将数据加载到指定的分区
装载数据
-- 加载本地文件到hive(tabA)
LOAD DATA LOCAL INPATH '/home/hadoop/data/sourceA.txt'
INTO TABLE tabA;
-- 检查本地文件还在
-- 加载hdfs文件到hive(tabA)
LOAD DATA INPATH 'data/sourceA.txt' INTO TABLE tabA;
-- 检查HDFS文件,已经被转移
-- 加载数据覆盖表中已有数据
LOAD DATA INPATH 'data/sourceA.txt' OVERWRITE INTO TABLE tabA;
-- 创建表时加载数据
hdfs dfs -mkdir /user/hive/tabB
hdfs dfs -put sourceA.txt /user/hive/tabB
CREATE TABLE tabB (
id INT
,name string
,area string
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
Location '/user/hive/tabB';
插入数据(Insert)
-- 插入数据
insert into table tabC partition(month='202001') values (5, 'wangwu', 'BJ'), (4, 'lishi', 'SH'), (3,'zhangsan', 'TJ');
-- 插入查询的结果数据
insert into table tabC partition(month='202002')
select id, name, area from tabC where month='202001';
-- 多表(多分区)插入模式
from tabC
insert overwrite table tabC partition(month='202003')
select id, name, area where month='202002'
insert overwrite table tabC partition(month='202004')
select id, name, area where month='202002';
创建表并插入数据(as select)
-- 根据查询结果创建表
create table if not exists tabD as select * from tabC;
使用import导入数据
import table student2 partition(month='201709') from '/user/hive/warehouse/export/student';
数据导出
-- 将查询结果导出到本地
insert overwrite local directory '/home/hadoop/data/tabC'
select * from tabC;
-- 将查询结果格式化输出到本地
insert overwrite local directory '/home/hadoop/data/tabC2'
row format delimited fields terminated by ' '
select * from tabC;
-- 将查询结果导出到HDFS
insert overwrite directory '/user/hadoop/data/tabC3'
row format delimited fields terminated by ' '
select * from tabC;
-- dfs 命令导出数据到本地。本质是执行数据文件的拷贝
dfs -get /user/hive/warehouse/mydb.db/tabc/month=202001/home/hadoop/data/tabC4
-- hive 命令导出数据到本地。执行查询将查询结果重定向到文件
hive -e "select * from tabC" > a.log
-- export 导出数据到HDFS。使用export导出数据时,不仅有数还有表的元数据信息
export table tabC to '/user/hadoop/data/tabC4';
-- export 导出的数据,可以使用 import 命令导入到 Hive 表中
-- 使用 like tname创建的表结构与原表一致。create ... as select ...结构可能不一致
create table tabE like tabc;
import table tabE from ''/user/hadoop/data/tabC4';
-- 截断表,清空数据。(注意:仅能操作内部表)
truncate table tabE;
-- 以下语句报错,外部表不能执行 truncate 操作
alter table tabC set tblproperties("EXTERNAL"="TRUE");
truncate table tabC;
HQL操作之–DQL命令
排序
- 全局排序(order by)
- 每个MR内部排序(sort by): 对于大规模数据而言order by效率低,在很多业务场景,我们并不需要全局有序的数据,此时可以使用sort by;
-- 设置reduce个数
set mapreduce.job.reduces=2;
-- 按照工资降序查看员工信息
select * from emp sort by sal desc;
-- 将查询结果导入到文件中(按照工资降序)。生成两个输出文件,每个文件内部数据按工资降序排列
insert overwrite local directory '/home/hadoop/output/sortsal'
select * from emp sort by sal desc;
- 分区排序(distribute by):distribute by 将特定的行发送到特定的reducer中,便于后继的聚合 与 排序操作;distribute by 类似于MR中的分区操作,可以结合sort by操作,使分区数据有序;
-- 启动2个reducer task;先按 deptno 分区,在分区内按 sal+comm 排序
set mapreduce.job.reduces=2;
-- 将结果输出到文件,观察输出结果
insert overwrite local directory '/home/hadoop/output/distBy'
select empno, ename, job, deptno, sal + nvl(comm, 0) salcomm
from emp
distribute by deptno
sort by salcomm desc;
- Cluster By :当distribute by 与 sort by是同一个字段时,可使用cluster by简化语法;
函数
- 查看系统内置函数
-- 查看系统自带函数
show functions;
- 日期函数【重要】
-- 当前前日期
select current_date;
select unix_timestamp();
-- 建议使用current_timestamp,有没有括号都可以
select current_timestamp();
-- 时间戳转日期
select from_unixtime(1505456567);
select from_unixtime(1505456567, 'yyyyMMdd');
select from_unixtime(1505456567, 'yyyy-MM-dd HH:mm:ss');
-- 日期转时间戳
select unix_timestamp('2019-09-15 14:23:00');
-- 计算时间差
select datediff('2020-04-18','2019-11-21');
select datediff('2019-11-21', '2020-04-18');
-- 查询当月第几天
select dayofmonth(current_date);
-- 计算月末:
select last_day(current_date);
-- 当月第1天:
select date_sub(current_date, dayofmonth(current_date)-1)
-- 下个月第1天:
select add_months(date_sub(current_date,dayofmonth(current_date)-1), 1)
-- 字符串转时间(字符串必须为:yyyy-MM-dd格式)
select to_date('2020-01-01');
select to_date('2020-01-01 12:12:12');
-- 日期、时间戳、字符串类型格式化输出标准时间格式
select date_format(current_timestamp(), 'yyyy-MM-dd HH:mm:ss');
select date_format(current_date(), 'yyyyMMdd');
select date_format('2020-06-01', 'yyyy-MM-dd HH:mm:ss');
-- 计算emp表中,每个人的工龄
select *, round(datediff(current_date, hiredate)/365,1) workingyears from emp;
- 字符串函数
-- 转小写。lower
select lower("HELLO WORLD");
-- 转大写。upper
select lower(ename), ename from emp;
-- 求字符串长度。length
select length(ename), ename from emp;
-- 字符串拼接。 concat / ||
select empno || " " ||ename idname from emp;
select concat(empno, " " ,ename) idname from emp;
-- 指定分隔符。concat_ws(separator, [string | array(string)]+)
SELECT concat_ws('.', 'www', array('lagou', 'com'));
select concat_ws(" ", ename, job) from emp;
-- 求子串。substr
SELECT substr('www.lagou.com', 5);
SELECT substr('www.lagou.com', -5);
SELECT substr('www.lagou.com', 5, 5);
-- 字符串切分。split,注意 '.' 要转义
select split("www.lagou.com", "\\.");
- 数学函数
-- 四舍五入。round
select round(314.15926);
select round(314.15926, 2);
select round(314.15926, -2);
-- 向上取整。ceil
select ceil(3.1415926);
-- 向下取整。floor
select floor(3.1415926);
- 条件函数【重要】
-- if (boolean testCondition, T valueTrue, T valueFalseOrNull)
select sal, if (sal<1500, 1, if (sal < 3000, 2, 3)) from emp;
-- CASE WHEN a THEN b [WHEN c THEN d]* [ELSE e] END
-- 将emp表的员工工资等级分类:0-1500、1500-3000、3000以上
select sal, if (sal<=1500, 1, if (sal <= 3000, 2, 3)) from emp;
-- COALESCE(T v1, T v2, ...)。返回参数中的第一个非空值;如果所有值都为NULL,那么返回NULL
select sal, coalesce(comm, 0) from emp;
-- isnull(a) isnotnull(a)
select * from emp where isnull(comm);
select * from emp where isnotnull(comm);
-- nvl(T value, T default_value)
select empno, ename, job, mgr, hiredate, deptno, sal + nvl(comm,0) sumsal
from emp;
-- nullif(x, y) 相等为空,否则为a
SELECT nullif("b", "b"), nullif("b", "a");
- UDTF函数【重要】
-- explode,炸裂函数
-- 就是将一行中复杂的 array 或者 map 结构拆分成多行
select explode(array('A','B','C')) as col;
select explode(map('a', 8, 'b', 88, 'c', 888));
-- lateral view 常与 表生成函数explode结合使用
lateralView: LATERAL VIEW udtf(expression) tableAlias AS columnAlias (',' columnAlias)*fromClause: FROM baseTable (lateralView)*
-- lateral view 的基本使用
with t1 as (
select 'OK' cola, split('www.lagou.com', '\\.') colb
)
select cola, colc
from t1
lateral view explode(colb) t2 as colc;
窗口函数
窗口函数又名开窗函数,属于分析函数的一种。用于解决复杂报表统计需求的功能强大的函数,很多场景都需要用到。窗口函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是:对于每个组返回多行,而聚合函数对于每个组只返回一行。
over 关键字
使用窗口函数之前一般要要通过over()进行开窗
-- 查询emp表工资总和
select sum(sal) from emp;
-- 不使用窗口函数,有语法错误
select ename, sal, sum(sal) salsum from emp;
-- 使用窗口函数,查询员工姓名、薪水、薪水总和
select ename, sal, sum(sal) over() salsum,concat(round(sal / sum(sal) over()*100, 1) || '%') ratiosal
from emp;
-- 注意:窗口函数是针对每一行数据的;如果over中没有参数,默认的是全部结果
集;
partition by子句
在over窗口中进行分区,对某一列进行分区统计,窗口的大小就是分区的大小
-- 查询员工姓名、薪水、部门薪水总和
select ename, sal, sum(sal) over(partition by deptno) salsum from emp;
order by 子句
order by 子句对输入的数据进行排序
-- 增加了order by子句;sum:从分组的第一行到当前行求和
select ename, sal, deptno, sum(sal) over(partition by deptno order by sal) salsum from emp;
** Window子句**
rows between ... and ...
如果要对窗口的结果做更细粒度的划分,使用window子句,有如下的几个选项:
- unbounded preceding。组内第一行数据
- n preceding。组内当前行的前n行数据
- current row。当前行数据
- n following。组内当前行的后n行数据
- unbounded following。组内最后一行数据
排名函数
都是从1开始,生成数据项在分组中的排名
- row_number()。排名顺序增加不会重复;如1、2、3、4、… …
- RANK()。 排名相等会在名次中留下空位;如1、2、2、4、5、… …
- DENSE_RANK()。 排名相等会在名次中不会留下空位 ;如1、2、2、3、4、
元数据管理与存储
Metastore
metastore三种配置方式
- 内嵌模式
- 本地模式:本地模式采用外部数据库来存储元数据,目前支持的数据库有:MySQL、Postgres、Oracle、MS SQL Server。教学中实际采用的是MySQL。本地模式不需要单独起metastore服务,用的是跟Hive在同一个进程里的metastore服务。也就是说当启动一个hive 服务时,其内部会启动一个metastore服务。Hive根据 hive.metastore.uris 参数值来判断,如果为空,则为本地模式
- 远程模式:远程模式下,需要单独起metastore服务,然后每个客户端都在配置文件里配置连接到该metastore服务。远程模式的metastore服务和hive运行在不同的进程里。在生产环境中,建议用远程模式来配置Hive Metastore。
HiveServer2
HiveServer2是一个服务端接口,使远程客户端可以执行对Hive的查询并返回结果。目前基于Thrift RPC的实现是HiveServer的改进版本,并支持多客户端并发和身份验证,启动hiveServer2服务后,就可以使用jdbc、odbc、thrift 的方式连接。
Thrift是一种接口描述语言和二进制通讯协议,它被用来定义和创建跨语言的服务。它被当作一个远程过程调用(RPC)框架来使用,是由Facebook为“大规模跨语言服务开发”而开发的。
HiveServer2作用:
- 为Hive提供了一种允许客户端远程访问的服务
- 基于thrift协议,支持跨平台,跨编程语言对Hive访问
- 允许远程访问Hive
HCatalog
HCatalog 提供了一个统一的元数据服务,允许不同的工具如 Pig、MapReduce 等通过 HCatalog 直接访问存储在 HDFS 上的底层文件。HCatalog是用来访问Metastore的Hive子项目,它的存在给了整个Hadoop生态环境一个统一的定义。
数据存储格式
Hive支持的存储数的格式主要有:TEXTFILE(默认格式) 、SEQUENCEFILE、RCFILE、ORCFILE、PARQUET。
行存储与列存储
行式存储下一张表的数据都是放在一起的,但列式存储下数据被分开保存了。
行式存储
优点:数据被保存在一起,insert和update更加容易
缺点:选择(selection)时即使只涉及某几列,所有数据也都会被读取
列式存储
优点:查询时只有涉及到的列会被读取,效率高
缺点:选中的列要重新组装,insert/update比较麻烦
SQL优化
sort by 代替 order by
HiveQL中的order by与其他关系数据库SQL中的功能一样,是将结果按某字段全局排序,这会导致所有map端数据都进入一个reducer中,在数据量大时可能会长时间计算不完。
如果使用sort by,那么还是会视情况启动多个reducer进行排序,并且保证每个reducer内局部有序。为了控制map端数据分配到reducer的key,往往还要配合distribute by 一同使用。如果不加 distribute by 的话,map端数据就会随机分配到reducer。
group by 代替 count(distinct)
当要统计某一列的去重数时,如果数据量很大,count(distinct) 会非常慢。原因与order by类似,count(distinct)逻辑只会有很少的reducer来处理。此时可以用
数据采集工具 – Flume
无论数据来自什么企业,或是多大量级,通过部署Flume,可以确保数据都安全、及时地到达大数据平台,用户可以将精力集中在如何洞悉数据上。
Flume的定义
Flume由Cloudera公司开发,是一个分布式、高可靠、高可用的海量日志采集、聚合、传输的系统
Flume支持在日志系统中定制各类数据发送方,用于采集数据;
- 分布式:flume分布式集群部署,扩展性好
- 可靠性好: 当节点出现故障时,日志能够被传送到其他节点上而不会丢失
- 易用性:flume配置使用较繁琐,对使用人员专业技术要求高
- 实时采集:flume采集流模式进行数据实时采集
Flume内部原理
具体过程
- Source接收事件,交给其Channel处理器处理事件
- 处理器通过拦截器Interceptor,对事件一些处理,比如压缩解码,正则拦截,时间戳拦截,分类等
- 经过拦截器处理过的事件再传给Channel选择器,将事件写入相应的Channel。Channel Selector有两种:
- Replicating Channel Selector(默认),会将source过来的Event发往所有Channel(比较常用的场景是,用多个Channel实现冗余副本,保证可用性)
- Multiplexing Channel Selector,根据配置分发event。此selector会根据event中某个header对应的value来将event发往不同的channel
- 最后由Sink处理器处理各个Channel的事件
基础应用
Source
- avro source:监听 Avro 端口来接收外部 avro 客户端的事件流。
- exec source:可以将命令产生的输出作为source。
- netcat source:一个NetCat Source用来监听一个指定端口,并接收监听到的数据。
- spooling directory source:将指定的文件加入到“自动搜集”目录中。flume会持续监听这个目录,把文件当做source来处理。注意:一旦文件被放到目录中后,便不能修改,如果修改,flume会报错。此外,也不能有重名的文件。
- Taildir Source(1.7):监控指定的多个文件,一旦文件内有新写入的数据,就会将其写入到指定的sink内,本来源可靠性高,不会丢失数据。
采集到的日志需要进行缓存,Flume提供了Channel组件用来缓存数据。常见的Channel 有:
- memory channel:缓存到内存中(最常用)
- file channel:缓存到文件中
- JDBC channel:通过JDBC缓存到关系型数据库中
- kafka channel:缓存到kafka中
缓存的数据最终需要进行保存,Flume提供了Sink组件用来保存数据。常见的 Sink有
- logger sink:将信息显示在标准输出上,主要用于测试
- avro sink:Flume events发送到sink,转换为Avro events,并发送到配置好的hostname/port。从配置好的channel按照配置好的批量大小批量获取events
- null sink:将接收到events全部丢弃
- HDFS sink:将 events 写进HDFS。支持创建文本和序列文件,支持两种文件类型压缩。文件可以基于数据的经过时间、大小、事件的数量周期性地滚动
- Hive sink:该sink streams 将包含分割文本或者JSON数据的events直接传送到Hive表或分区中。使用Hive 事务写events。当一系列events提交到Hive时,它们马上可以被Hive查询到
- HBase sink:保存到HBase中
- kafka sink:保存到kafka中
数据迁移工具 – Sqoop
Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql等)间进行数据的传递。可以将关系型数据库(MySQL ,Oracle,Postgres等)中的数据导入到HDFS中,也可以将HDFS的数据导进到关系型数据库中。
- 导入是指:从关系型数据库向大数据集群(HDFS、HIVE、HBASE)传输数据;使用import关键字;
- 导出是指:从 大数据集群 向 关系型数据库 传输数据;使用export关键字;