【论文速读】DDIM:DENOISING DIFFUSION IMPLICIT MODELS

详细见论文

2010.02502v4

简单理解

因为DDPM是遵循马尔可夫过程的,下一时刻状态取决上一时刻状态。DDIM经过变换后,让前向加噪过程成立的同时,去噪过程可以不遵循马尔可夫过程,将T=1000的序列,采样L序列(远小于T),加速推理
在这里插入图片描述

实现代码

    @torch.no_grad()
    def ddim_sample(self, shape, cond, **kwargs):
        batch, device, total_timesteps, sampling_timesteps, eta = shape[0], self.betas.device, self.n_timestep, 50, 1

        times = torch.linspace(-1, total_timesteps - 1, steps=sampling_timesteps + 1)   # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
        times = list(reversed(times.int().tolist()))
        time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值