单目视觉测距
原理
这里分享两篇我觉得讲的比较好的博客,这篇文章里的代码所用原理都是最简单的相似三角形法
1
2
代码
python
这部分是转载自上面其中一篇的博客,主要是记录下来方便自己以后查找。
import numpy as np
import cv2
# KNOWN_DISTANCE:相机和标定物体间的距离(cm)
KNOWN_DISTANCE = 10
KNOWN_DISTANCE = KNOWN_DISTANCE / 2.54 # 一英寸等于 2.54 cm
# KNOWN_WIDTH:标定物体的宽度(cm)
KNOWN_WIDTH = 5
KNOWN_WIDTH = KNOWN_WIDTH / 2.54 # 一英寸等于 2.54 cm
# KNOWN_HEIGHT:标定物体的高度(cm)
KNOWN_HEIGHT = 12
KNOWN_HEIGHT = KNOWN_HEIGHT / 2.54 # 一英寸等于 2.54 cm
# perWidth:像素宽度
perWidth = [265, 16]
IMAGE_PATHS = ["5.jpg", "6.jpg"] # 第一个是用于标定的图片
# image = cv2.imread("9_.jpg")
def distance_to_camera(knownWidth, focalLength, perWidth):
return (knownWidth * focalLength) / perWidth
def calculate_focalDistance(perWidth):
# first_image = cv2.imread(img_path)
# cv2.imshow('first image',first_image)
# marker = find_marker(first_image)
# 得到最小外接矩形的中心点坐标,长宽,旋转角度
# 其中marker[1][0]是该矩形的宽度,单位为像素
focalLength = (perWidth * KNOWN_DISTANCE) / KNOWN_WIDTH
# 获取摄像头的焦距
print('焦距(focalLength )= ', focalLength)