原题:
给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。
请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays
思路和解答:
思路:
用归并排序,把两个数组排序(其实也可以不用真的排,放个指针就行了),然后分奇偶计算出中位数。这是最简单的思路。比较直接,还有一个大佬的回答,下一篇转载一下。
代码:
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int[] all = new int[nums1.length + nums2.length];
boolean if_even = false;
if(all.length%2 == 0) if_even = true;
int m = 0, n = 0;
for(int i = 0;i<(nums1.length + nums2.length);i++){
if(nums1[m]<=nums2[n]){
all[i] = nums1[m];
m++;
}
else{
all[i] = nums2[n];
n++;
}
if(if_even&&i == all.length/2){
continue;
}
if(if_even&&i == all.length/2 + 1){
return (all[i]+all[i-1])/2.0;
}
else if(i == (all.length+1)/2){
return all[i]*1.0;
}
}
return -1;
}