批量查分爬虫

这是一个使用Python编写的脚本,通过Pandas、Requests和Re库实现批量查询庐江中考成绩。脚本从Excel文件中读取姓名和准考证号,向https://ljcj.hfzsks.org/发送POST请求获取成绩,解析HTML内容并按总分降序排序,最后将结果保存回Excel文件。
摘要由CSDN通过智能技术生成

中考爬虫批量查分脚本

前言

庐江中考成绩发布了,但不知道表弟的班级排名,但碰巧有之前班级的准考证号的表格,所以写了这个批量查分脚本


代码

该脚本使用Python语言,使用了PandasRequestsRe包。本项目测试使用的数据均为网上公开数据。同时*https://ljcj.hfzsks.org/*没有robots.txt,默认没有违反爬虫协议啦。

输入文件(Excel)需包含姓名中考准考证号列。

输出文件(Excel)包含各科以及总成绩,并按总分降序排序。

github

import re
import requests
import pandas as pd

baseURL = "https://ljcj.hfzsks.org/"
postURL = "https://ljcj.hfzsks.org/list_score/cj_out.php"
cookieName = "PHPSESSID"
subject2re = {}
subjectList = ["语文", "数学", "英语", "道德与法治", "历史", "物理", "化学", "体育", "实验", "政策加分", "总分"]

def getCookie(url):
    response = requests.get(url)
    cookieValue = response.cookies.get(cookieName)
    return {cookieName: cookieValue}


def getHtml(fzkh: str, name: str, cookie):
    data = {
        "find_fzkh": fzkh,
        "find_fxm": name,
        "seach_name": "查  询"
    }
    response = requests.post(postURL, data=data, cookies=cookie)
    return response.content.decode()

def getSubjectScores(content: str):
    subject2score = {}
    for key, value in subject2re.items():
        subject2score[key] = value.findall(content)[0]
    return subject2score

def initSubjectRE():
    for subject in subjectList:
        subject2re[subject] = re.compile('''bgcolor='#CCCCCC'>''' + subject + '''</td>\s*<td align="center" width="120">(.*?)</td>''')
    return subject2re

if __name__ == '__main__':
    data = pd.read_excel("C:/Users/WILL/Desktop/test.xlsx")
    cookie = getCookie(baseURL)
    initSubjectRE()
    scoreList = {subject : [] for subject in subjectList}
    print("--------开始爬取--------")
    for index, row in data.iterrows():
        print("已爬取: 姓名:" + row['姓名'] + "; 准考证:" + str(row['中考准考证号']) + "\n")
        html = getHtml(row['中考准考证号'], row['姓名'], cookie)
        scores = getSubjectScores(html)
        for key, value in scores.items():
            scoreList[key].append(value)
    for key, value in scoreList.items():
        data[key] = value
    print("--------排序--------")
    data = data.sort_values(by="总分", ascending=False)
    print("--------导出数据到excel--------")
    with pd.ExcelWriter('test.xlsx') as writer:
        data.to_excel(writer, sheet_name='data')


测试结果

测试结果

爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值