Python设置随机数种子

本文介绍了如何在Python中设置随机数生成器的种子以确保实验结果的一致性。通过实例展示了不同种子对随机数的影响,并重点讲解了`random.seed()`和`np.random.seed()`的用法。
摘要由CSDN通过智能技术生成

原因:使用相同种子保证每次实验生成固定的随机数,使每次实验结果一致。不同种子生成不一样的随机数。

seed = random.randint(1, 10000)
print('Random seed: {}'.format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)

设置方式

if torch.cuda.is_available():
    print("gpu cuda is available!")
    torch.cuda.manual_seed(1000)
else:
    print("cuda is not available! cpu is available!")
    torch.manual_seed(1000)

random.seed()

seed()改变随机数生成器的种子,在调用其他随机模块函数之前调用此函数
seed()没有参数时,每次生成的随机数是不一样的,seed()有参数时是一样的,不同的参数生成的随机数不一样

import random

# 随机数不一样
random.seed()
print('随机数1:',random.random())
random.seed()
print('随机数2:',random.random())

# 随机数一样
random.seed(1)
print('随机数3:',random.random())
random.seed(1)
print('随机数4:',random.random())
random.seed(2)
print('随机数5:',random.random())

'''
随机数1: 0.7643602170615428
随机数2: 0.31630323818329664
随机数3: 0.13436424411240122
随机数4: 0.13436424411240122
随机数5: 0.9560342718892494
'''

参考

`np.random.seed()

seed值设为某一定值,则np.random下随机数生成函数生成的随机数永远是不变的。更清晰的说,即当你把设置为seed(0),则你每次运行代码第一次用np.random.rand()产生的随机数永远是0.5488135039273248;第二次用np.random.rand()产生的随机数永远是0.7151893663724195

import numpy as np
 
np.random.seed(0)
for i in range(6):
    print(np.random.rand())
 
0.5488135039273248
0.7151893663724195
0.6027633760716439
0.5448831829968969
0.4236547993389047
0.6458941130666561
 
 
np.random.seed(0)
for i in range(3):
    print(np.random.rand())
 
0.5488135039273248
0.7151893663724195
0.6027633760716439

参考

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值