原因:使用相同种子保证每次实验生成固定的随机数,使每次实验结果一致。不同种子生成不一样的随机数。
seed = random.randint(1, 10000)
print('Random seed: {}'.format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
设置方式
if torch.cuda.is_available():
print("gpu cuda is available!")
torch.cuda.manual_seed(1000)
else:
print("cuda is not available! cpu is available!")
torch.manual_seed(1000)
random.seed()
seed()改变随机数生成器的种子,在调用其他随机模块函数之前调用此函数
seed()没有参数时,每次生成的随机数是不一样的,seed()有参数时是一样的,不同的参数生成的随机数不一样
import random
# 随机数不一样
random.seed()
print('随机数1:',random.random())
random.seed()
print('随机数2:',random.random())
# 随机数一样
random.seed(1)
print('随机数3:',random.random())
random.seed(1)
print('随机数4:',random.random())
random.seed(2)
print('随机数5:',random.random())
'''
随机数1: 0.7643602170615428
随机数2: 0.31630323818329664
随机数3: 0.13436424411240122
随机数4: 0.13436424411240122
随机数5: 0.9560342718892494
'''
`np.random.seed()
seed值设为某一定值,则np.random下随机数生成函数生成的随机数永远是不变的。更清晰的说,即当你把设置为seed(0),则你每次运行代码第一次用np.random.rand()产生的随机数永远是0.5488135039273248;第二次用np.random.rand()产生的随机数永远是0.7151893663724195
import numpy as np
np.random.seed(0)
for i in range(6):
print(np.random.rand())
0.5488135039273248
0.7151893663724195
0.6027633760716439
0.5448831829968969
0.4236547993389047
0.6458941130666561
np.random.seed(0)
for i in range(3):
print(np.random.rand())
0.5488135039273248
0.7151893663724195
0.6027633760716439