46. 全排列 JavaScript实现

46. 全排列

题目链接

全排列的仔细讲解

一、思想

(1)for循环+递归

在这里插入图片描述

(2)选择和撤销

在这里插入图片描述
思路解析

  • 按顺序枚举每一位可能出现的情况,已经选择的数字在 当前 要选择的数字中不能出现(设置一个 visited 数组)。
  • 这样的思路,可以用一个树形结构表示。而树上的每一个结点表示了求解全排列问题的不同的阶段,这些阶段通过变量的「不同的值」体现,这些变量的不同的值,称之为「状态」;
  • 使用深度优先遍历有「回头」的过程,在「回头」以后, 状态变量需要设置成为和先前一样,因此在回到上一层结点的过程中,需要撤销上一次的选择,这个操作称之为「状态重置」;

在这里插入图片描述

(3)回溯的核心思想

// 回溯算法的核心框架
for 选择 in 选择列表:
	// 做出选择,将选择加入路径当中.并且used数组中相对应的置为true
    路径.push(选择);
    used[选择] = true;
    
    // 做出选择之后的节点 继续做出选择
    backtrack(路径, 选择列表); 
    
    // 撤销选择,进行状态重置。进行下一次初始节点的选择
    路径.pop(选择)
    将该选择再加入选择列表

(4)需要注意的点

a. used数组

布尔数组 used,初始化的时候都为 false 表示这些数还没有被选择,当我们选定一个数的时候,就将这个数组的相应位置设置为 true ,这样在考虑下一个位置的时候,就能够以O(1) 的时间复杂度判断这个数是否被选择过,这是一种「以空间换时间」的思想。

b. 深浅拷贝

深浅拷贝
下文代码里提到了两个位置:位置1和位置2,如果不在这两个位置之一对track进行拷贝操作、而是直接result.push(track)的话,会将trace[]的引用push到result数组中,而 for 循环内不断在对track进行修改,由于没有进行拷贝,for循环内的修改会被同步到result数组内。

二、代码实现

var permute = function(nums) {
    // 用来存储最后的结果
    var result = [];
    
    // 用来存储一个路径
    var track = [];
    // 一个布尔型数组,用来判断这个数字是否被选择过.初始值全部置为false
    var used = new Array(nums.length).fill(false);
    
    // 定义一个递归函数,传入的参数有选择列表nums,路径track,布尔型数组used
    // 要从选择列表里选择一个布尔型数组里为false的数字,加入路径
    function backTrace(nums,track,used){
        // 递归结束条件:当一个路径里的数字长度等于选择列表里的数字长度
        if(track.length == nums.length){
            // 将一条track加入到最后的结果result中
            // 这里需要进行深拷贝,而不是简单的浅拷贝,因为for循环内部一直在修改track的值。如过不进行拷贝,修改会同步到result中。
            result.push([...track]);
            return; 
        }
        
        for(let i=0;i<nums.length;i++){
            // 首先检查这个数字是否已经选择过.选择过就是true.
            // 注意这里是continue,因为是结束这次选择,进行下一次选择
            if(used[i]) continue;
            
            // 没有选择过,就做出选择,加入到路径当中
            track.push(nums[i]);
            // 改变使用状态
            used[i] = true;
            
            // 递归这个改变了状态的节点
            backTrace(nums,track,used);
            
            // 撤销选择
            track.pop(nums[i]);
            used[i] = false;   
        } 
    }
    // 调用递归函数
    backTrace(nums,track,used);
    return result;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值