46. 全排列
一、思想
(1)for循环+递归
(2)选择和撤销
思路解析
- 按顺序枚举每一位可能出现的情况,已经选择的数字在 当前 要选择的数字中不能出现(设置一个 visited 数组)。
- 这样的思路,可以用一个树形结构表示。而树上的每一个结点表示了求解全排列问题的不同的阶段,这些阶段通过变量的「不同的值」体现,这些变量的不同的值,称之为「状态」;
- 使用深度优先遍历有「回头」的过程,在「回头」以后, 状态变量需要设置成为和先前一样,因此在回到上一层结点的过程中,需要撤销上一次的选择,这个操作称之为「状态重置」;
(3)回溯的核心思想
// 回溯算法的核心框架
for 选择 in 选择列表:
// 做出选择,将选择加入路径当中.并且used数组中相对应的置为true
路径.push(选择);
used[选择] = true;
// 做出选择之后的节点 继续做出选择
backtrack(路径, 选择列表);
// 撤销选择,进行状态重置。进行下一次初始节点的选择
路径.pop(选择)
将该选择再加入选择列表
(4)需要注意的点
a. used数组
布尔数组 used,初始化的时候都为 false 表示这些数还没有被选择,当我们选定一个数的时候,就将这个数组的相应位置设置为 true ,这样在考虑下一个位置的时候,就能够以O(1) 的时间复杂度判断这个数是否被选择过,这是一种「以空间换时间」的思想。
b. 深浅拷贝
深浅拷贝
下文代码里提到了两个位置:位置1和位置2,如果不在这两个位置之一对track进行拷贝操作、而是直接result.push(track)的话,会将trace[]的引用push到result数组中,而 for 循环内不断在对track进行修改,由于没有进行拷贝,for循环内的修改会被同步到result数组内。
二、代码实现
var permute = function(nums) {
// 用来存储最后的结果
var result = [];
// 用来存储一个路径
var track = [];
// 一个布尔型数组,用来判断这个数字是否被选择过.初始值全部置为false
var used = new Array(nums.length).fill(false);
// 定义一个递归函数,传入的参数有选择列表nums,路径track,布尔型数组used
// 要从选择列表里选择一个布尔型数组里为false的数字,加入路径
function backTrace(nums,track,used){
// 递归结束条件:当一个路径里的数字长度等于选择列表里的数字长度
if(track.length == nums.length){
// 将一条track加入到最后的结果result中
// 这里需要进行深拷贝,而不是简单的浅拷贝,因为for循环内部一直在修改track的值。如过不进行拷贝,修改会同步到result中。
result.push([...track]);
return;
}
for(let i=0;i<nums.length;i++){
// 首先检查这个数字是否已经选择过.选择过就是true.
// 注意这里是continue,因为是结束这次选择,进行下一次选择
if(used[i]) continue;
// 没有选择过,就做出选择,加入到路径当中
track.push(nums[i]);
// 改变使用状态
used[i] = true;
// 递归这个改变了状态的节点
backTrace(nums,track,used);
// 撤销选择
track.pop(nums[i]);
used[i] = false;
}
}
// 调用递归函数
backTrace(nums,track,used);
return result;
};