一个语句解决pandas读取数据遇到的编码不符,忽略错行的问题

这篇博客探讨了在处理CSV文件时遇到的编码问题和数据格式不规范导致的ParserError。通过使用`open`函数的`errors='ignore'`参数忽略部分行的编码错误,然后利用`pd.read_csv`的`error_bad_lines=False`跳过有问题的数据行,可以成功读取文件并了解哪些行被跳过及其原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有时候文件会报错编码问题或者是像下面这样数据不规范导致的问题:
ParserError:Error tokenizing data.C error:Expected 2 fields in line 407,saw 3.

# 先通过open解决部分行有字节编码错误,errors='ignore'
with open('your.csv', encoding='utf-8',errors='ignore') as f:
	# 再解决部分报错行如 ParserError:Error tokenizing data.C error:Expected 2 fields in line 407,saw 3.
    dataset = pd.read_csv(f, error_bad_lines=False,,sep=',')

可以看到跳过了哪些行,因为什么原因跳过。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值