自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 【领域泛化】论文介绍《Learning to balance specificity and invariance for in and out of domain generalization》

在本文发表前,大多数成熟的领域泛化方法专注于学习跨所有源域不变表示的存在(DIRs方法为主),然而,通常单个域包含独特的特征(类似域内特有信息的说法),利用这些信息,能显著提升任务的性能。本文提出一种用于泛化的领域特定编码(DMG:Domain-specic Masks for Generalization)的方法,鼓励掩码学习领域不变特征和领域特定特征之间的平衡。

2022-11-14 20:35:23 777 1

原创 【领域泛化】论文介绍《Domain generalization via multidomain discriminant analysis》

在领域泛化(DG)中,有一个很常见的假设,就是分布偏移只存在于边缘分布P(X)P(X)P(X),即只发生先验偏移(Prior Shift),没有发生概念偏移(Concept Shift),条件分布(后验分布)P(Y∣X)P(Y|X)P(Y∣X)不同域是不变的,这就是为什么大多数DIR要对齐表示空间的边缘分布P(X)P(X)P(X)。但从因果分析的角度来看,只有当XXX是YYY的原因的时候,这种对齐才是有效的,但对于很多任务,特别是分类任务,Y。

2022-11-11 01:24:15 685

原创 【领域泛化】论文介绍《Respecting domain relations Hypothesis invariance for domain generalization》

在领域泛化中,学习域不变表示(DIRs)是普遍的主流方法,但是DIRs完美对齐不同领域的表示是否太过严格,本文提出一种新观点假设不变表示(HIRs),学习域不变后验,放松了DIRs的假设。在本文中,提出了表示的充分性,表示的不变性这两个概念,又证明了DIRs不利于学习域的特有信息,会损害表示的充分性,最后在公共数据集上验证了HIRs在领域泛化中的有效性和竞争性。

2022-11-09 01:15:56 914

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除