要点:
题目描述:
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104 ) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;否则将计算的每一步在一行内输出,直到 6174
作为差出现,输出格式见样例。注意每个数字按 4
位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
代码:
#include <stdio.h>
#include <string.h>
int main() {
char str[5], re[5], c;
int n, i, j, a, b;
scanf("%d", &n);
do {
sprintf(str, "%04d", n);
for (i = 0; i < 4; i++) {
for (j = 3; j > i; j--)
if (str[j] > str[j - 1]) {
c = str[j];
str[j] = str[j - 1];
str[j - 1] = c;
}
re[3 - i] = str[i];
}
re[4] = '\0';
sscanf(str, "%d", &a);
sscanf(re, "%d", &b);
n = a - b;
printf("%04d - %04d = %04d\n", a, b, n);
} while (n != 6174 && n != 0);
return 0;
}