层和块(深度学习计算)

层和块

之前首次介绍神经网络时,我们关注的是具有单一输出的线性模型。 在这里,整个模型只有一个输出。 注意,

单个神经网络 = { ( 1 )接受一些输入 ( 2 )生成相应的标量输出 ( 3 )具有一组相关参数( p a r a m e t e r s ) 单个神经网络 = \begin{cases}(1)接受一些输入 \\ (2)生成相应的标量输出 \\ (3)具有一组相关参数(parameters)\end{cases} 单个神经网络= 1)接受一些输入2)生成相应的标量输出3)具有一组相关参数(parameters

更新这些参数可以优化某目标函数。

然后,当考虑具有多个输出的网络时, 我们利用矢量化算法来描述整层神经元。 像单个神经元一样,此层

{ ( 1 )接受一组输入 ( 2 )生成相应的输出 ( 3 )由一组可调整参数描述。 \begin{cases}(1)接受一组输入 \\ (2)生成相应的输出 \\ (3)由一组可调整参数描述。\end{cases} 1)接受一组输入2)生成相应的输出3)由一组可调整参数描述。

当我们使用softmax回归时,一个单层本身就是模型。 然而,即使我们随后引入了多层感知机,我们仍然可以认为该模型保留了上面所说的基本架构。

对于多层感知机而言,整个模型及其组成层都是这种架构。整个模型接受原始输入(特征),生成输出(预测), 并包含一些参数(所有组成层的参数集合)。 同样,每个单独的层接收输入(由前一层提供), 生成输出(到下一层的输入),并且具有一组可调参数, 这些参数根据从下一层反向传播的信号进行更新。

事实证明,研究讨论 “比单个层大” 但 “比整个模型小” 的组件更有价值。 例如,在计算机视觉中广泛流行的ResNet-152架构就有数百层, 这些层是由层组(groups of layers)的重复模式组成。 这个ResNet架构赢得了2015年ImageNet和COCO计算机视觉比赛的识别和检测任务 [He et al., 2016a]。 目前ResNet架构仍然是许多视觉任务的首选架构。 在其他的领域,如自然语言处理和语音, 层组以各种重复模式排列的类似架构现在也是普遍存在。

为了实现这些复杂的网络,我们引入了神经网络块的概念。 块(block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件, 这一过程通常是递归的,如下图所示。 通过定义代码来按需生成任意复杂度的块, 我们可以通过简洁的代码实现复杂的神经网络。

在这里插入图片描述

从编程的角度来看,块由 类(class) 表示。 它的任何子类都必须定义一个将其输入转换为输出前向传播函数, 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。 在定义我们自己的块时,由于自动微分提供了一些后端实现,我们只需要考虑前向传播函数和必需的参数。

在构造自定义块之前,我们先回顾一下多层感知机的代码。

下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。

import torch                                          #引入torch
from torch import nn                                 #引入神经网络
from torch.nn import functional as F                 #引入神经网络中的函数

#定义神经网络模型,其中包含一个隐藏层,共有256个隐单元
net = nn.Sequential(nn.Linear(20,256), nn.ReLU(), nn.Linear(256,10))

#生成均匀分布的数值,其中torch.randn()生成的是标准正态分布
X = torch.rand(2, 20)
net(X)                                                #输出神经网络预测的值
tensor([[ 0.0294, -0.0472,  0.2127, -0.0699,  0.2484,  0.1598,  0.0426, -0.2851,
         -0.2245, -0.1830],
        [-0.0524, -0.1220,  0.2092,  0.0616,  0.2616,  0.1025, -0.1069, -0.3397,
         -0.2035, -0.1531]], grad_fn=<AddmmBackward0>)

在这个例子中,我们通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的。 简而言之,nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 它维护了一个由Module组成的有序列表。 注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 这实际上是net.__call__(X)的简写。 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。

自定义块

要想直观地了解块是如何工作的,最简单的方法就是自己实现一个。 在实现我们自定义块之前,我们简要总结一下每个块必须提供的基本功能:

1、将输入数据作为其前向传播函数的参数。

2、通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。
   例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。

3、计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。

4、存储和访问前向传播计算所需的参数。

5、根据需要初始化模型参数。

在下面的代码片段中,我们从零开始编写一个块。 它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。 注意,下面的MLP类继承了表示块的类。 我们的实现只需要提供我们自己的构造函数(Python中的__init__函数)和前向传播函数。

class MLP(nn.Module):
    
    #用模型参数声明层。这里,我们声明两个全连接层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化
        # 这样,在类实例化也可以指定其它函数参数,例如模型参数params(稍后会介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)              #隐藏层
        self.out = nn.Linear(256, 10)                 #输出层
        
    
    #定义模型的前向传播,即如何根据输入X返回所需的模型参数
    def forward(self, X):
        #注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义
        return self.out(F.relu(self.hidden(X)))
    
    

我们首先看一下前向传播函数,它以X作为输入, 计算带有激活函数的隐藏表示,并输出其未规范化的输出值。 在这个MLP实现中,两个层都是实例变量。 要了解这为什么是合理的,可以想象实例化两个多层感知机(net1和net2), 并根据不同的数据对它们进行训练。 当然,我们希望它们学到两种不同的模型。

接着我们实例化多层感知机的层,然后在每次调用前向传播函数时调用这些层。 注意一些关键细节: 首先,我们定制的__init__函数通过super().__init__() 调用父类的__init__函数, 省去了重复编写模版代码的痛苦。 然后,我们实例化两个全连接层, 分别为self.hidden和self.out。 注意,除非我们实现一个新的运算符, 否则我们不必担心反向传播函数或参数初始化, 系统将自动生成这些。

net = MLP()
net(X)
tensor([[ 0.3524, -0.0080,  0.0731,  0.1084,  0.0454,  0.1718,  0.0725, -0.3134,
          0.1652, -0.2138],
        [ 0.2220,  0.0433,  0.0600,  0.1555,  0.0924,  0.2730,  0.0395, -0.5403,
          0.2354, -0.2894]], grad_fn=<AddmmBackward0>)

的一个主要优点是它的多功能性。 我们可以子类化块以创建层(如全连接层的类)、 整个模型(如上面的MLP类)或具有中等复杂度的各种组件。 我们在接下来的章节中充分利用了这种多功能性, 比如在处理卷积神经网络时。

顺序块

现在我们可以更仔细地看看Sequential类是如何工作的, 回想一下Sequential的设计是为了把其他模块串起来。 为了构建我们自己的简化的MySequential, 我们只需要定义两个关键函数:

1、一种将块逐个追加到列表中的函数。

2、一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。

下面的MySequential类提供了与默认Sequential类相同的功能。

#定义顺序块,用以存储神经网络
class MySequential(nn.Module):
    
    #定义类的初始化函数
    def __init__(self, *args):
        super().__init__()                           #调用父类的初始化函数
        
        #通过循环不断地向顺序块中添加神经网络
        for idx, module in enumerate(args):
            #这里, module是Module子类的一个实例。我们把它保存在'Module'类的成员
            #变量_modules中。_module的类型是OrderedDict
            self._modules[str(idx)] = module
            
    #定义前向传播函数
    def forward(self, X):
        #OrderedDict保证了按照成员添加地顺序遍历它们
        for block in self._modules.values():
            X = block(X)                           #顺序地调用X进入神经网络
            
        return X

__init__函数将每个模块逐个添加到有序字典_modules中。 你可能会好奇为什么每个Module都有一个_modules属性? 以及为什么我们使用它而不是自己定义一个Python列表? 简而言之,_modules的主要优点是: 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。

当MySequential的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。 现在可以使用我们的MySequential类重新实现多层感知机。

#实例化顺序块对象
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

net(X)
tensor([[-0.1506,  0.1624, -0.1427,  0.0080, -0.1948,  0.0842,  0.1825,  0.1821,
         -0.1700,  0.1438],
        [-0.1944,  0.1550, -0.1231,  0.0146, -0.1227, -0.0500,  0.2044,  0.1428,
         -0.2641, -0.0220]], grad_fn=<AddmmBackward0>)

请注意,MySequential的用法与之前为Sequential类编写的代码相同。

在前向传播函数中执行代码

Sequential类使模型构造变得简单, 允许我们组合新的架构,而不必定义自己的类。 然而,并不是所有的架构都是简单的顺序架构。 当需要更强的灵活性时,我们需要定义自己的块。 例如,我们可能希望在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。

到目前为止, 我们网络中的所有操作都对网络的激活值及网络的参数起作用。

然而,有时我们可能希望合并既不是上一层的结果也不是可更新参数的项, 我们称之为常数参数(constant parameter)。 例如,我们需要一个计算函数 $f(x, w) = c \cdot w^Tx $ 的层, 其中 x x x 是输入, w w w 是参数, c c c 是某个在优化过程中没有更新的指定常量。 因此我们实现了一个FixedHiddenMLP类,如下所示:

class FixedHiddenMLP(nn.Module):
    
    def __init__(self):
        super().__init__()
        
        #不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20,20), requires_grad=False)
        self.linear = nn.Linear(20,20)
        
    def forward(self, X):
        X = self.linear(X)
        
        #使用创建的常量参数以及relu和mm函数'
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        #复用全连接层。相当于两个全连接层共享参数
        X = self.linear(X)
        #控制流
        while X.abs().sum() > 1:
            X /= 2
            
        return X.sum()

在这个 FixedHiddenMLP 模型中,我们实现了一个隐藏层, 其权重(self.rand_weight)在实例化时被随机初始化,之后为常量。 这个权重不是一个模型参数,因此它永远不会被反向传播更新。 然后,神经网络将这个固定层的输出通过一个全连接层。

注意,在返回输出之前,模型做了一些不寻常的事情: 它运行了一个while循环,在 L 1 L_1 L1 范数大于 1 1 1 的条件下, 将输出向量除以 2 2 2 ,直到它满足条件为止。 最后,模型返回了 X X X 中所有项的和。 注意,此操作可能不会常用于在任何实际任务中, 我们只是向你展示如何将任意代码集成到神经网络计算的流程中。

net = FixedHiddenMLP()
X, net(X)
(tensor([[0.6002, 0.6970, 0.8435, 0.4162, 0.9259, 0.0152, 0.7891, 0.3840, 0.0942,
          0.0245, 0.0248, 0.6321, 0.7874, 0.8893, 0.2032, 0.3613, 0.3369, 0.3674,
          0.0578, 0.7056],
         [0.1072, 0.3630, 0.9294, 0.6267, 0.3761, 0.1347, 0.8899, 0.8383, 0.0328,
          0.2300, 0.5797, 0.6842, 0.9483, 0.9679, 0.5453, 0.3542, 0.9578, 0.6276,
          0.8556, 0.3014]]),
 tensor(0.3268, grad_fn=<SumBackward0>))

我们可以混合搭配各种组合块的方法。 在下面的例子中,我们以一些想到的方法嵌套块。

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)
        
    def forward(self, X):
        return self.linear(self.net(X))
    
chimera = nn.Sequential(NestMLP(), nn.Linear(16,20), FixedHiddenMLP())
chimera(X)
tensor(0.0353, grad_fn=<SumBackward0>)

小结

  1. 一个块可以由许多层组成;一个块可以由许多块组成。

  2. 块可以包含代码。

  3. 块负责大量的内部处理,包括参数初始化和反向传播。

  4. 层和块的顺序连接由Sequential块处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaolw1102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值