PAT 甲级 1013 Battle Over Cities
无向图、连通分量、dfs
首先构造一个无向图,然后去掉一个节点和与其连接的边,输出剩余节点生成连通图需要添加的边数。
可知要把n个连通分量生成连通图所需的边数为n-1,我们只需要求出去掉某个节点之后剩余的联通分量数
例子中去掉1则2 3都是连通分量,所需边数为2-1=1;
去掉2或3剩余的连通分量数都是1,所需边数为1-1=0;
每次从一个未访问过的节点出发,可以遍历一个连通分量,将该分量上的每个节点都置为访问过
// 1013 Battle Over Cities.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
#include <iostream>
#include <algorithm>
using namespace std;
int v[1005][1005];
bool visit[1005];
int n;
void dfs(int node) {
visit[node] = true;
for (int i = 1; i <= n; i++) {
if (visit[i] == false && v[node][i] == 1) {
dfs(i);
}
}
}
int main()
{
int m, k, a, b;
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i++) {
scanf("%d%d", &a, &b);
v[a][b] = v[b][a] = 1;
}
for (int i = 0; i < k; i++) {
fill(visit, visit + 1005, false); //每次循环都要把visit重置
scanf("%d", &a);
visit[a] = true;
int cnt = 0;
for (int j = 1; j <= n; j++) {
if (visit[j] == false) { //未访问过的节点,从他开始遍历整个连通分量
cnt++; //找到一个新连通分量
dfs(j);
}
}
cout << cnt - 1 << endl;
}
return 0;
}